AIMC Topic: Embryo Transfer

Clear Filters Showing 21 to 30 of 69 articles

Clinical data-based modeling of IVF live birth outcome and its application.

Reproductive biology and endocrinology : RB&E
BACKGROUND: The low live birth rate and difficult decision-making of the in vitro fertilization (IVF) treatment regimen bring great trouble to patients and clinicians. Based on the retrospective clinical data of patients undergoing the IVF cycle, thi...

Beyond black-box models: explainable AI for embryo ploidy prediction and patient-centric consultation.

Journal of assisted reproduction and genetics
PURPOSE: To determine if an explainable artificial intelligence (XAI) model enhances the accuracy and transparency of predicting embryo ploidy status based on embryonic characteristics and clinical data.

Clinical outcomes of single blastocyst transfer with machine learning guided noninvasive chromosome screening grading system in infertile patients.

Reproductive biology and endocrinology : RB&E
BACKGROUND: Prospective observational studies have demonstrated that the machine learning (ML) -guided noninvasive chromosome screening (NICS) grading system, which we called the noninvasive chromosome screening-artificial intelligence (NICS-AI) grad...

Artificial intelligence-powered assisted ranking of sibling embryos to increase first cycle pregnancy rate.

Reproductive biomedicine online
RESEARCH QUESTION: Could EMBRYOLY, an artificial intelligence embryo evaluation tool, assist embryologists to increase first cycle pregnancy rate and reduce cycles to pregnancy for patients?

Seeking arrangements: cell contact as a cleavage-stage biomarker.

Reproductive biomedicine online
RESEARCH QUESTION: What can three-dimensional cell contact networks tell us about the developmental potential of cleavage-stage human embryos?

Correlations between a deep learning-based algorithm for embryo evaluation with cleavage-stage cell numbers and fragmentation.

Reproductive biomedicine online
RESEARCH QUESTION: Do cell numbers and degree of fragmentation in cleavage-stage embryos, assessed manually, correlate with evaluations made by deep learning algorithm model iDAScore v2.0?

Interpretable artificial intelligence-assisted embryo selection improved single-blastocyst transfer outcomes: a prospective cohort study.

Reproductive biomedicine online
RESEARCH QUESTION: What is the pregnancy and neonatal outcomes of an interpretable artificial intelligence (AI) model for embryo selection in a prospective clinical trial?

Improved pregnancy prediction performance in an updated deep-learning embryo selection model: a retrospective independent validation study.

Reproductive biomedicine online
RESEARCH QUESTION: What is the effect of increasing training data on the performance of ongoing pregnancy prediction after single vitrified-warmed blastocyst transfer (SVBT) in a deep-learning model?

External validation of a model for selecting day 3 embryos for transfer based upon deep learning and time-lapse imaging.

Reproductive biomedicine online
RESEARCH QUESTION: Could objective embryo assessment using iDAScore Version 2.0 perform as well as conventional morphological assessment?