AIMC Topic: Maternal Age

Clear Filters Showing 1 to 10 of 20 articles

Preterm birth trends and risk factors in a multi-ethnic Asian population: A retrospective study from 2017 to 2023, can we screen and predict this?

Annals of the Academy of Medicine, Singapore
INTRODUCTION: Preterm birth (PTB) remains a leading cause of perinatal morbidity and mortality worldwide. Understanding Singapore's PTB trends and associated risk factors can inform effective strategies for screening and intervention. This study anal...

Machine learning prediction of preterm birth in women under 35 using routine biomarkers in a retrospective cohort study.

Scientific reports
Preterm birth (PTB), defined as delivery before 37 weeks, affects 15 million infants annually, accounting for 11% of live births and over 35% of neonatal deaths. While advanced maternal age (≥ 35 years) is a known risk factor, PTB risk in women under...

Machine learning algorithms in constructing prediction models for assisted reproductive technology (ART) related live birth outcomes.

Scientific reports
Currently applicable models for predicting live birth outcomes in patients who received assisted reproductive technology (ART) have methodological or study design limitations that greatly obstruct their dissemination and application. Models suitable ...

Predicting adverse pregnancy outcome in Rwanda using machine learning techniques.

PloS one
BACKGROUND: Adverse pregnancy outcomes pose significant risk to maternal and neonatal health, contributing to morbidity, mortality, and long-term developmental challenges. This study aimed to predict these outcomes in Rwanda using supervised machine ...

Geographic inequities in neonatal survival in Nigeria: a cross-sectional evidence from spatial and artificial neural network analyses.

Journal of biosocial science
This study was conducted to provide empirical evidence of geographical variations of neonatal mortality and its associated social determinants with a view to improving neonatal survival at the subnational level in Nigeria. With a combination of spati...

Beyond black-box models: explainable AI for embryo ploidy prediction and patient-centric consultation.

Journal of assisted reproduction and genetics
PURPOSE: To determine if an explainable artificial intelligence (XAI) model enhances the accuracy and transparency of predicting embryo ploidy status based on embryonic characteristics and clinical data.

An explainable machine learning-based clinical decision support system for prediction of gestational diabetes mellitus.

Scientific reports
Gestational Diabetes Mellitus (GDM), a common pregnancy complication associated with many maternal and neonatal consequences, is increased in mothers with overweight and obesity. Interventions initiated early in pregnancy can reduce the rate of GDM i...

Machine learning approaches to predict gestational age in normal and complicated pregnancies via urinary metabolomics analysis.

Scientific reports
The elucidation of dynamic metabolomic changes during gestation is particularly important for the development of methods to evaluate pregnancy status or achieve earlier detection of pregnancy-related complications. Some studies have constructed model...

Prediction of obstetrical and fetal complications using automated electronic health record data.

American journal of obstetrics and gynecology
An increasing number of delivering women experience major morbidity and mortality. Limited work has been done on automated predictive models that could be used for prevention. Using only routinely collected obstetrical data, this study aimed to devel...