AIMC Topic: Enzyme Inhibitors

Clear Filters Showing 31 to 40 of 84 articles

Exploring the potential of machine learning to design antidiabetic molecules: a comprehensive study with experimental validation.

Journal of biomolecular structure & dynamics
Recent advances in hardware and software algorithms have led to the rise of data-driven approaches for designing therapeutic modalities. One of the major causes of human mortality is diabetes. Thus, there is a tremendous opportunity for research into...

Development and validation of machine learning models for the prediction of SH-2 containing protein tyrosine phosphatase 2 inhibitors.

Molecular diversity
Discovery and development of a new drug to the market is a highly challenging and resource consuming process. Although, modern drug discovery technologies have enabled the rapid identification of lead compounds, translation of the lead compounds into...

A consensual machine-learning-assisted QSAR model for effective bioactivity prediction of xanthine oxidase inhibitors using molecular fingerprints.

Molecular diversity
Xanthine oxidase inhibitors (XOIs) have been widely studied due to the promising potential as safe and effective therapeutics in hyperuricemia and gout. Currently, available XOI molecules have been developed from different experiments but they are wi...

Dietary Inhibitors of CYP3A4 Are Revealed Using Virtual Screening by Using a New Deep-Learning Classifier.

Journal of agricultural and food chemistry
CYP3A4 is the main human enzyme responsible for phase I metabolism of dietary compounds, prescribed drugs and xenobiotics, steroid hormones, and bile acids. The inhibition of CYP3A4 activity might impair physiological mechanisms, including the endocr...

QSAR and deep learning model for virtual screening of potential inhibitors against Inosine 5' Monophosphate dehydrogenase (IMPDH) of Cryptosporidium parvum.

Journal of molecular graphics & modelling
Cryptosporidium parvum (Cp) causes a gastro-intestinal disease called Cryptosporidiosis. C. parvum Inosine 5' monophosphate dehydrogenase (CpIMPDH) is responsible for the production of guanine nucleotides. In the present study, 37 known urea-based co...

Machine-Learning-Enabled Virtual Screening for Inhibitors of Lysine-Specific Histone Demethylase 1.

Molecules (Basel, Switzerland)
A machine learning approach has been applied to virtual screening for lysine specific demethylase 1 (LSD1) inhibitors. LSD1 is an important anti-cancer target. Machine learning models to predict activity were constructed using Morgan molecular finger...

LCP: Simple Representation of Docking Poses for Machine Learning: A Case Study on Xanthine Oxidase Inhibitors.

Molecular informatics
In this paper, we propose a simple descriptor called the ligand coordinate profile (LCP) for describing docking poses. The LCP descriptor is generated from the coordinates of the polar hydrogen and heavy atoms of the docked ligand. We hypothesize tha...

StackHCV: a web-based integrative machine-learning framework for large-scale identification of hepatitis C virus NS5B inhibitors.

Journal of computer-aided molecular design
Fast and accurate identification of inhibitors with potency against HCV NS5B polymerase is currently a challenging task. As conventional experimental methods is the gold standard method for the design and development of new HCV inhibitors, they often...

Ensemble learning application to discover new trypanothione synthetase inhibitors.

Molecular diversity
Trypanosomatid-caused diseases are among the neglected infectious diseases with the highest disease burden, affecting about 27 million people worldwide and, in particular, socio-economically vulnerable populations. Trypanothione synthetase (TryS) is ...