AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Imagery, Psychotherapy

Showing 11 to 20 of 28 articles

Clear Filters

A Deep Learning Framework Based on Dynamic Channel Selection for Early Classification of Left and Right Hand Motor Imagery Tasks.

Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Ideal brain-computer interfaces (BCIs) need to be efficient and accurate, demanding for classifiers that can work across subjects while providing high classification accu-racy results from recordings with short duration. To address this problem, we p...

A Pruned Deep Learning Approach for Classification of Motor Imagery Electroencephalography Signals.

Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
The Deep Learning (DL) approach has been gaining much popularity in recent years in the development of electroencephalogram (EEG) based Motor Imagery (MI) Brain-Computer Interface (BCI) systems, aiming to improve the performance of existing stroke re...

Convolutional neural networks and genetic algorithm for visual imagery classification.

Physical and engineering sciences in medicine
Brain-Computer Interface (BCI) systems establish a channel for direct communication between the brain and the outside world without having to use the peripheral nervous system. While most BCI systems use evoked potentials and motor imagery, in the pr...

Computational discrimination between natural images based on gaze during mental imagery.

Scientific reports
When retrieving image from memory, humans usually move their eyes spontaneously as if the image were in front of them. Such eye movements correlate strongly with the spatial layout of the recalled image content and function as memory cues facilitatin...

Generating Hyperspectral Skin Cancer Imagery using Generative Adversarial Neural Network.

Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
In this study we develop a proof of concept of using generative adversarial neural networks in hyperspectral skin cancer imagery production. Generative adversarial neural network is a neural network, where two neural networks compete. The generator t...

EEG classification across sessions and across subjects through transfer learning in motor imagery-based brain-machine interface system.

Medical & biological engineering & computing
Transfer learning enables the adaption of models to handle mismatches of distributions across sessions or across subjects. In this paper, we proposed a new transfer learning algorithm to classify motor imagery EEG data. By analyzing the power spectru...

Challenge Accepted? Individual Performance Gains for Motor Imagery Practice with Humanoid Robotic EEG Neurofeedback.

Sensors (Basel, Switzerland)
Optimizing neurofeedback (NF) and brain-computer interface (BCI) implementations constitutes a challenge across many fields and has so far been addressed by, among others, advancing signal processing methods or predicting the user's control ability f...

Deep learning for EEG-based Motor Imagery classification: Accuracy-cost trade-off.

PloS one
Electroencephalography (EEG) datasets are often small and high dimensional, owing to cumbersome recording processes. In these conditions, powerful machine learning techniques are essential to deal with the large amount of information and overcome the...

Multi optimized SVM classifiers for motor imagery left and right hand movement identification.

Australasian physical & engineering sciences in medicine
EEG signal can be a good alternative for disabled persons who cannot perform actions or perform them improperly. Brain computer interface (BCI) is an attractive technology which permits control and interaction with a computer or a machine using EEG s...

Muscleless motor synergies and actions without movements: From motor neuroscience to cognitive robotics.

Physics of life reviews
Emerging trends in neurosciences are providing converging evidence that cortical networks in predominantly motor areas are activated in several contexts related to 'action' that do not cause any overt movement. Indeed for any complex body, human or e...