The functional corticospinal integrity (CSI) can be indexed by motor-evoked potentials (MEP) following transcranial magnetic stimulation of the motor cortex. Glial brain tumors in motor-eloquent areas are frequently disturbing CSI resulting in differ...
IEEE transactions on bio-medical engineering
33513096
OBJECTIVE: This article presents the development and validation of a new robotic system for Transcranial Magnetic Stimulation (TMS), characterized by a new control approach, and an ad-hoc calibration methodology, specifically devised for the TMS appl...
It is likely that when using an artificially augmented hand with six fingers, the natural five plus a robotic one, corticospinal motor synergies controlling grasping actions might be different. However, no direct neurophysiological evidence for this ...
Transcranial magnetic stimulation (TMS) motor mapping is a safe, non-invasive method used to study corticomotor organization and intervention-induced plasticity. Reliability of resting maps is well established, but understudied for active maps and un...
In recent years, the neural control mechanisms of the arms and legs during human bipedal walking have been clarified. Rhythmic leg stepping leads to suppression of monosynaptic reflex excitability in forearm muscles. However, it is unknown whether an...
The analysis of motor evoked potentials (MEPs) generated by transcranial magnetic stimulation (TMS) is crucial in research and clinical medical practice. MEPs are characterized by their latency and the treatment of a single patient may require the ch...
BACKGROUND: Navigated transcranial magnetic stimulation (nTMS) is a well-established preoperative mapping tool for motor-eloquent glioma surgery. Machine learning (ML) and nTMS may improve clinical outcome prediction and histological correlation.
BACKGROUND: This study aimed to investigate the effects of virtual reality (VR)-based robot therapy combined with task-oriented therapy on cerebral cortex activation and upper limb function in patients with stroke.
OBJECTIVE: To develop and evaluate machine learning (ML) approaches for muscle identification using intraoperative motor evoked potentials (MEPs), and to compare their performance to human experts.
BACKGROUND: Transcranial magnetic stimulation (TMS) is a valuable technique for assessing the function of the motor cortex and cortico-muscular pathways. TMS activates the motoneurons in the cortex, which after transmission along cortico-muscular pat...