Journal of biomolecular structure & dynamics
Nov 18, 2023
There has been an abrupt increase in brain tumor (BT) related medical cases during the past ten years. The tenth most typical type of tumor affecting millions of people is the BT. The cure rate can, however, rise if it is found early. When evaluating...
RATIONALE AND OBJECTIVES: Imaging-based differentiation between glioblastoma (GB) and brain metastases (BM) remains challenging. Our aim was to evaluate the performance of 3D-convolutional neural networks (CNN) to address this binary classification p...
Statistical shape modeling (SSM) characterizes anatomical variations in a population of shapes generated from medical images. Statistical analysis of shapes requires consistent shape representation across samples in shape cohort. Establishing this re...
PURPOSE: Preclinical MR fingerprinting (MRF) suffers from long acquisition time for organ-level coverage due to demanding image resolution and limited undersampling capacity. This study aims to develop a deep learning-assisted fast MRF framework for ...
The objective of the current study was to develop and evaluate a DEep learning-based rapid Spiral Image REconstruction (DESIRE) and deep learning (DL)-based segmentation approach to quantify the left ventricular ejection fraction (LVEF) for high-reso...
RATIONALE AND OBJECTIVES: Pericardial fat (PF)-the thoracic visceral fat surrounding the heart-promotes the development of coronary artery disease by inducing inflammation of the coronary arteries. To evaluate PF, we generated pericardial fat count i...
This research introduces a deep learning method for ocean wave height estimation utilizing a Convolutional Neural Network (CNN) based on the VGGNet. The model is trained on a dataset comprising buoy wave heights and radar images, both critical for ma...
BACKGROUND: Pediatric surgery patients often present with complex congenital anomalies or other conditions requiring deep understanding of their intricate anatomy. Commercial applications and services exist for the conversion of cross-sectional imagi...
BACKGROUND: To investigate the potential of combining compressed sensing (CS) and deep learning (DL) for accelerated two-dimensional (2D) and three-dimensional (3D) magnetic resonance imaging (MRI) of the shoulder.
Quantitative phase imaging, integrated with artificial intelligence, allows for the rapid and label-free investigation of the physiology and pathology of biological systems. This review presents the principles of various two-dimensional and three-dim...