AIMC Topic: Ligands

Clear Filters Showing 81 to 90 of 659 articles

Estimating AChE inhibitors from MCE database by machine learning and atomistic calculations.

Journal of molecular graphics & modelling
Acetylcholinesterase (AChE) is one of the most successful targets for the treatment of Alzheimer's disease (AD). Inhibition of AChE can result in preventing AD. In this context, the machine-learning (ML) model, molecular docking, and molecular dynami...

Machine learning-based prediction of bioactivity in HIV-1 protease: insights from electron density analysis.

Future medicinal chemistry
To develop a model for predicting the biological activity of compounds targeting the HIV-1 protease and to establish factors influencing enzyme inhibition. Machine learning models were built based on a combination of Richard Bader's theory of Atoms ...

Investigating Ligand-Mediated Conformational Dynamics of Pre-miR21: A Machine-Learning-Aided Enhanced Sampling Study.

Journal of chemical information and modeling
MicroRNAs (miRs) are short, noncoding RNA strands that regulate the activity of mRNAs by affecting the repression of protein translation, and their dysregulation has been implicated in several pathologies. miR21 in particular has been implicated in t...

Improving drug-target interaction prediction through dual-modality fusion with InteractNet.

Journal of bioinformatics and computational biology
In the drug discovery process, accurate prediction of drug-target interactions is crucial to accelerate the development of new drugs. However, existing methods still face many challenges in dealing with complex biomolecular interactions. To this end,...

A deep learning approach for rational ligand generation with toxicity control via reactive building blocks.

Nature computational science
Deep generative models are gaining attention in the field of de novo drug design. However, the rational design of ligand molecules for novel targets remains challenging, particularly in controlling the properties of the generated molecules. Here, ins...

Interaction-Based Inductive Bias in Graph Neural Networks: Enhancing Protein-Ligand Binding Affinity Predictions From 3D Structures.

IEEE transactions on pattern analysis and machine intelligence
Inductive bias in machine learning (ML) is the set of assumptions describing how a model makes predictions. Different ML-based methods for protein-ligand binding affinity (PLA) prediction have different inductive biases, leading to different levels o...

GeoNet enables the accurate prediction of protein-ligand binding sites through interpretable geometric deep learning.

Structure (London, England : 1993)
The identification of protein binding residues is essential for understanding their functions in vivo. However, it remains a computational challenge to accurately identify binding sites due to the lack of known residue binding patterns. Local residue...

Challenge for Deep Learning: Protein Structure Prediction of Ligand-Induced Conformational Changes at Allosteric and Orthosteric Sites.

Journal of chemical information and modeling
In the realm of biomedical research, understanding the intricate structure of proteins is crucial, as these structures determine how proteins function within our bodies and interact with potential drugs. Traditionally, methods like X-ray crystallogra...

AlzyFinder: A Machine-Learning-Driven Platform for Ligand-Based Virtual Screening and Network Pharmacology.

Journal of chemical information and modeling
Alzheimer's disease (AD), a prevalent neurodegenerative disorder, presents significant challenges in drug development due to its multifactorial nature and complex pathophysiology. The AlzyFinder Platform, introduced in this study, addresses these cha...

Molecular tweaking by generative cheminformatics and ligand-protein structures for rational drug discovery.

Bioorganic chemistry
The purpose of this review is two-fold: (1) to summarize artificial intelligence and machine learning approaches and document the role of ligand-protein structures in directing drug discovery; (2) to present examples of drugs from the recent literatu...