AI Medical Compendium Topic:
Molecular Docking Simulation

Clear Filters Showing 441 to 450 of 597 articles

Deep Learning and Random Forest Approach for Finding the Optimal Traditional Chinese Medicine Formula for Treatment of Alzheimer's Disease.

Journal of chemical information and modeling
It has demonstrated that glycogen synthase kinase 3β (GSK3β) is related to Alzheimer's disease (AD). On the basis of the world largest traditional Chinese medicine (TCM) database, a network-pharmacology-based approach was utilized to investigate TCM ...

Automated discovery of GPCR bioactive ligands.

Current opinion in structural biology
While G-protein-coupled receptors (GPCRs) constitute the largest class of membrane proteins, structures and endogenous ligands of a large portion of GPCRs remain unknown. Because of the involvement of GPCRs in various signaling pathways and physiolog...

IVS2vec: A tool of Inverse Virtual Screening based on word2vec and deep learning techniques.

Methods (San Diego, Calif.)
Inverse Virtual Screening is a powerful technique in the early stage of drug discovery process. This technique can provide important clues for biologically active molecules, which is useful in the following researches of durg discovery. In this work,...

Improved Method of Structure-Based Virtual Screening via Interaction-Energy-Based Learning.

Journal of chemical information and modeling
Virtual screening is a promising method for obtaining novel hit compounds in drug discovery. It aims to enrich potentially active compounds from a large chemical library for further biological experiments. However, the accuracy of current virtual scr...

The Development of Target-Specific Machine Learning Models as Scoring Functions for Docking-Based Target Prediction.

Journal of chemical information and modeling
The identification of possible targets for a known bioactive compound is of the utmost importance for drug design and development. Molecular docking is one possible approach for in-silico protein target prediction, whereas a molecule is docked into s...

Predicting protein-peptide interaction sites using distant protein complexes as structural templates.

Scientific reports
Protein-peptide interactions play an important role in major cellular processes, and are associated with several human diseases. To understand and potentially regulate these cellular function and diseases it is important to know the molecular details...

A combined drug discovery strategy based on machine learning and molecular docking.

Chemical biology & drug design
Data mining methods based on machine learning play an increasingly important role in drug design and discovery. In the current work, eight machine learning methods including decision trees, k-Nearest neighbor, support vector machines, random forests,...

In Need of Bias Control: Evaluating Chemical Data for Machine Learning in Structure-Based Virtual Screening.

Journal of chemical information and modeling
Reports of successful applications of machine learning (ML) methods in structure-based virtual screening (SBVS) are increasing. ML methods such as convolutional neural networks show promising results and often outperform traditional methods such as e...

De Novo Molecular Design by Combining Deep Autoencoder Recurrent Neural Networks with Generative Topographic Mapping.

Journal of chemical information and modeling
Here we show that Generative Topographic Mapping (GTM) can be used to explore the latent space of the SMILES-based autoencoders and generate focused molecular libraries of interest. We have built a sequence-to-sequence neural network with Bidirection...

Machine Learning Consensus To Predict the Binding to the Androgen Receptor within the CoMPARA Project.

Journal of chemical information and modeling
The nuclear androgen receptor (AR) is one of the most relevant biological targets of Endocrine Disrupting Chemicals (EDCs), which produce adverse effects by interfering with hormonal regulation and endocrine system functioning. This paper describes n...