AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Mutation, Missense

Showing 11 to 20 of 44 articles

Clear Filters

Cross-protein transfer learning substantially improves disease variant prediction.

Genome biology
BACKGROUND: Genetic variation in the human genome is a major determinant of individual disease risk, but the vast majority of missense variants have unknown etiological effects. Here, we present a robust learning framework for leveraging saturation m...

Predicting pathogenic protein variants.

Science (New York, N.Y.)
Machine-learning algorithm uses structure prediction to spot disease-causing mutations.

Prediction of protein structure and AI.

Journal of human genetics
AlphaFold, an artificial intelligence (AI)-based tool for predicting the 3D structure of proteins, is now widely recognized for its high accuracy and versatility in the folding of human proteins. AlphaFold is useful for understanding structure-functi...

Characterizing and predicting ccRCC-causing missense mutations in Von Hippel-Lindau disease.

Human molecular genetics
BACKGROUND: Mutations within the Von Hippel-Lindau (VHL) tumor suppressor gene are known to cause VHL disease, which is characterized by the formation of cysts and tumors in multiple organs of the body, particularly clear cell renal cell carcinoma (c...

PMSPcnn: Predicting protein stability changes upon single point mutations with convolutional neural network.

Structure (London, England : 1993)
Protein missense mutations and resulting protein stability changes are important causes for many human genetic diseases. However, the accurate prediction of stability changes due to mutations remains a challenging problem. To address this problem, we...

Discovering predisposing genes for hereditary breast cancer using deep learning.

Briefings in bioinformatics
Breast cancer (BC) is the most common malignancy affecting Western women today. It is estimated that as many as 10% of BC cases can be attributed to germline variants. However, the genetic basis of the majority of familial BC cases has yet to be iden...

Rapid discrimination between deleterious and benign missense mutations in the CAGI 6 experiment.

Human genomics
We describe the machine learning tool that we applied in the CAGI 6 experiment to predict whether single residue mutations in proteins are deleterious or benign. This tool was trained using only single sequences, i.e., without multiple sequence align...

Enhancing Missense Variant Pathogenicity Prediction with MissenseNet: Integrating Structural Insights and ShuffleNet-Based Deep Learning Techniques.

Biomolecules
The classification of missense variant pathogenicity continues to pose significant challenges in human genetics, necessitating precise predictions of functional impacts for effective disease diagnosis and personalized treatment strategies. Traditiona...

Decoding Missense Variants by Incorporating Phase Separation via Machine Learning.

Nature communications
Computational models have made significant progress in predicting the effect of protein variants. However, deciphering numerous variants of uncertain significance (VUS) located within intrinsically disordered regions (IDRs) remains challenging. To ad...

AI-derived comparative assessment of the performance of pathogenicity prediction tools on missense variants of breast cancer genes.

Human genomics
Single nucleotide variants (SNVs) can exert substantial and extremely variable impacts on various cellular functions, making accurate predictions of their consequences challenging, albeit crucial especially in clinical settings such as in oncology. L...