AIMC Topic: Mutation, Missense

Clear Filters Showing 11 to 20 of 45 articles

Decoding Missense Variants by Incorporating Phase Separation via Machine Learning.

Nature communications
Computational models have made significant progress in predicting the effect of protein variants. However, deciphering numerous variants of uncertain significance (VUS) located within intrinsically disordered regions (IDRs) remains challenging. To ad...

AI-derived comparative assessment of the performance of pathogenicity prediction tools on missense variants of breast cancer genes.

Human genomics
Single nucleotide variants (SNVs) can exert substantial and extremely variable impacts on various cellular functions, making accurate predictions of their consequences challenging, albeit crucial especially in clinical settings such as in oncology. L...

Enhancing Missense Variant Pathogenicity Prediction with MissenseNet: Integrating Structural Insights and ShuffleNet-Based Deep Learning Techniques.

Biomolecules
The classification of missense variant pathogenicity continues to pose significant challenges in human genetics, necessitating precise predictions of functional impacts for effective disease diagnosis and personalized treatment strategies. Traditiona...

Rapid discrimination between deleterious and benign missense mutations in the CAGI 6 experiment.

Human genomics
We describe the machine learning tool that we applied in the CAGI 6 experiment to predict whether single residue mutations in proteins are deleterious or benign. This tool was trained using only single sequences, i.e., without multiple sequence align...

PMSPcnn: Predicting protein stability changes upon single point mutations with convolutional neural network.

Structure (London, England : 1993)
Protein missense mutations and resulting protein stability changes are important causes for many human genetic diseases. However, the accurate prediction of stability changes due to mutations remains a challenging problem. To address this problem, we...

Prediction of protein structure and AI.

Journal of human genetics
AlphaFold, an artificial intelligence (AI)-based tool for predicting the 3D structure of proteins, is now widely recognized for its high accuracy and versatility in the folding of human proteins. AlphaFold is useful for understanding structure-functi...

Predicting pathogenic protein variants.

Science (New York, N.Y.)
Machine-learning algorithm uses structure prediction to spot disease-causing mutations.

Cross-protein transfer learning substantially improves disease variant prediction.

Genome biology
BACKGROUND: Genetic variation in the human genome is a major determinant of individual disease risk, but the vast majority of missense variants have unknown etiological effects. Here, we present a robust learning framework for leveraging saturation m...

Gene-specific machine learning for pathogenicity prediction of rare BRCA1 and BRCA2 missense variants.

Scientific reports
Machine learning-based pathogenicity prediction helps interpret rare missense variants of BRCA1 and BRCA2, which are associated with hereditary cancers. Recent studies have shown that classifiers trained using variants of a specific gene or a set of ...

Prediction of Kv11.1 potassium channel PAS-domain variants trafficking via machine learning.

Journal of molecular and cellular cardiology
Congenital long QT syndrome (LQTS) is characterized by a prolonged QT-interval on an electrocardiogram (ECG). An abnormal prolongation in the QT-interval increases the risk for fatal arrhythmias. Genetic variants in several different cardiac ion chan...