AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Narration

Showing 71 to 80 of 121 articles

Clear Filters

CRFs based de-identification of medical records.

Journal of biomedical informatics
De-identification is a shared task of the 2014 i2b2/UTHealth challenge. The purpose of this task is to remove protected health information (PHI) from medical records. In this paper, we propose a novel de-identifier, WI-deId, based on conditional rand...

Mining heart disease risk factors in clinical text with named entity recognition and distributional semantic models.

Journal of biomedical informatics
We present the design, and analyze the performance of a multi-stage natural language processing system employing named entity recognition, Bayesian statistics, and rule logic to identify and characterize heart disease risk factor events in diabetic p...

Risk factor detection for heart disease by applying text analytics in electronic medical records.

Journal of biomedical informatics
In the United States, about 600,000 people die of heart disease every year. The annual cost of care services, medications, and lost productivity reportedly exceeds 108.9 billion dollars. Effective disease risk assessment is critical to prevention, ca...

Automated systems for the de-identification of longitudinal clinical narratives: Overview of 2014 i2b2/UTHealth shared task Track 1.

Journal of biomedical informatics
The 2014 i2b2/UTHealth Natural Language Processing (NLP) shared task featured four tracks. The first of these was the de-identification track focused on identifying protected health information (PHI) in longitudinal clinical narratives. The longitudi...

Identifying risk factors for heart disease over time: Overview of 2014 i2b2/UTHealth shared task Track 2.

Journal of biomedical informatics
The second track of the 2014 i2b2/UTHealth natural language processing shared task focused on identifying medical risk factors related to Coronary Artery Disease (CAD) in the narratives of longitudinal medical records of diabetic patients. The risk f...

Combining knowledge- and data-driven methods for de-identification of clinical narratives.

Journal of biomedical informatics
A recent promise to access unstructured clinical data from electronic health records on large-scale has revitalized the interest in automated de-identification of clinical notes, which includes the identification of mentions of Protected Health Infor...

Agile text mining for the 2014 i2b2/UTHealth Cardiac risk factors challenge.

Journal of biomedical informatics
This paper describes the use of an agile text mining platform (Linguamatics' Interactive Information Extraction Platform, I2E) to extract document-level cardiac risk factors in patient records as defined in the i2b2/UTHealth 2014 challenge. The appro...

Challenges in clinical natural language processing for automated disorder normalization.

Journal of biomedical informatics
BACKGROUND: Identifying key variables such as disorders within the clinical narratives in electronic health records has wide-ranging applications within clinical practice and biomedical research. Previous research has demonstrated reduced performance...

Using local lexicalized rules to identify heart disease risk factors in clinical notes.

Journal of biomedical informatics
Heart disease is the leading cause of death globally and a significant part of the human population lives with it. A number of risk factors have been recognized as contributing to the disease, including obesity, coronary artery disease (CAD), hyperte...