AIMC Topic: Ocular Hypertension

Clear Filters Showing 11 to 15 of 15 articles

Detecting Glaucoma in the Ocular Hypertension Study Using Deep Learning.

JAMA ophthalmology
IMPORTANCE: Automated deep learning (DL) analyses of fundus photographs potentially can reduce the cost and improve the efficiency of reading center assessment of end points in clinical trials.

Accuracy of Kalman Filtering in Forecasting Visual Field and Intraocular Pressure Trajectory in Patients With Ocular Hypertension.

JAMA ophthalmology
IMPORTANCE: Techniques that properly identify patients in whom ocular hypertension (OHTN) is likely to progress to open-angle glaucoma can assist clinicians with deciding on the frequency of monitoring and the potential benefit of early treatment.

Hybrid Deep Learning on Single Wide-field Optical Coherence tomography Scans Accurately Classifies Glaucoma Suspects.

Journal of glaucoma
PURPOSE: Existing summary statistics based upon optical coherence tomographic (OCT) scans and/or visual fields (VFs) are suboptimal for distinguishing between healthy and glaucomatous eyes in the clinic. This study evaluates the extent to which a hyb...

Conditional asymptotic inference for the kernel association test.

Bioinformatics (Oxford, England)
MOTIVATION: The kernel association test (KAT) is popular in biological studies for its ability to combine weak effects potentially of opposite direction. Its P-value is typically assessed via its (unconditional) asymptotic distribution. However, such...