AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Tonometry, Ocular

Showing 1 to 10 of 12 articles

Clear Filters

Detection of Longitudinal Visual Field Progression in Glaucoma Using Machine Learning.

American journal of ophthalmology
PURPOSE: Global indices of standard automated perimerty are insensitive to localized losses, while point-wise indices are sensitive but highly variable. Region-wise indices sit in between. This study introduces a machine learning-based index for glau...

Use of Machine Learning on Contact Lens Sensor-Derived Parameters for the Diagnosis of Primary Open-angle Glaucoma.

American journal of ophthalmology
PURPOSE: To test the hypothesis that contact lens sensor (CLS)-based 24-hour profiles of ocular volume changes contain information complementary to intraocular pressure (IOP) to discriminate between primary open-angle glaucoma (POAG) and healthy (H) ...

Development and validation of a machine learning, smartphone-based tonometer.

The British journal of ophthalmology
BACKGROUND/AIMS: To compare intraocular pressure (IOP) measurements using a prototype smartphone tonometer with other tonometers used in clinical practice.

Accuracy of Kalman Filtering in Forecasting Visual Field and Intraocular Pressure Trajectory in Patients With Ocular Hypertension.

JAMA ophthalmology
IMPORTANCE: Techniques that properly identify patients in whom ocular hypertension (OHTN) is likely to progress to open-angle glaucoma can assist clinicians with deciding on the frequency of monitoring and the potential benefit of early treatment.

Using Deep Learning to Automate Goldmann Applanation Tonometry Readings.

Ophthalmology
PURPOSE: To develop an objective and automated method for measuring intraocular pressure using deep learning and fixed-force Goldmann applanation tonometry (GAT) techniques.

Open-source deep learning-based automatic segmentation of mouse Schlemm's canal in optical coherence tomography images.

Experimental eye research
The purpose of this study was to develop an automatic deep learning-based approach and corresponding free, open-source software to perform segmentation of the Schlemm's canal (SC) lumen in optical coherence tomography (OCT) scans of living mouse eyes...

Remote and low-cost intraocular pressure monitoring by deep learning of speckle patterns.

Journal of biomedical optics
SIGNIFICANCE: Glaucoma, a leading cause of global blindness, disproportionately affects low-income regions due to expensive diagnostic methods. Affordable intraocular pressure (IOP) measurement is crucial for early detection, especially in low- and m...

Machine Learning Models for Predicting 24-Hour Intraocular Pressure Changes: A Comparative Study.

Medical science monitor : international medical journal of experimental and clinical research
BACKGROUND Predicting 24-hour intraocular pressure (IOP) fluctuations is crucial for enhancing glaucoma management. Traditional methods of measuring 24-hour IOP fluctuations are complex and present certain limitations. The present study leverages mac...