Range verification in proton therapy is a critical quality assurance task. We studied the feasibility of online range verification based on proton-induced acoustic signals, using a bidirectional long-short-term-memory recurrent neural network and var...
Dual-energy computed tomography (DECT) has shown a great potential for lowering range uncertainties, which is necessary for truly leveraging the Bragg peak in proton therapy. However, analytical stopping-power-ratio (SPR) estimation methods have limi...
PURPOSE: To develop a convolutional neural network (CNN) that can directly estimate material density distribution from multi-energy computed tomography (CT) images without performing conventional material decomposition.
Conebeam CT using a circular trajectory is quite often used for various applications due to its relative simple geometry. For conebeam geometry, Feldkamp, Davis and Kress algorithm is regarded as the standard reconstruction method, but this algorithm...
PURPOSE: To develop a deep learning method for rapidly reconstructing T and T maps from undersampled electrocardiogram (ECG) triggered cardiac magnetic resonance fingerprinting (cMRF) images.
PURPOSE: Four-dimensional cone-beam computed tomography (4D CBCT) imaging has been suggested as a solution to account for interfraction motion variability of moving targets like lung and liver during radiotherapy (RT) of moving targets. However, due ...
International journal of computer assisted radiology and surgery
Sep 30, 2020
PURPOSE: Elasticity of soft tissue provides valuable information to physicians during treatment and diagnosis of diseases. A number of approaches have been proposed to estimate tissue stiffness from the shear wave velocity. Optical coherence elastogr...
We developed a generative adversarial network (GAN)-based deep learning approach to estimate the multileaf collimator (MLC) aperture and corresponding monitor units (MUs) from a given 3D dose distribution. The proposed design of the adversarial netwo...
Three-dimensional cone-beam imaging has become valuable in interventional radiology. Currently, this tool, referred to as C-arm CT, employs a circular short-scan for data acquisition, which limits the axial volume coverage and yields unavoidable cone...
Four-dimensional (4D) cone-beam CT (CBCT) reconstructs temporally-resolved phases of 3D volumes often with the same amount of projection data that are meant for reconstructing a single 3D volume. 4D CBCT is a sparse-data problem that is very challeng...