AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Elasticity Imaging Techniques

Showing 1 to 10 of 89 articles

Clear Filters

Deep Learning-Enabled Automated Quality Control for Liver MR Elastography: Initial Results.

Journal of magnetic resonance imaging : JMRI
BACKGROUND: Several factors can impair image quality and reliability of liver magnetic resonance elastography (MRE), such as inadequate driver positioning, insufficient wave propagation and patient-related factors.

ANTs, BET, or…neither? An exploration of brain masking and machine learning tools applied to magnetic resonance elastography.

Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Magnetic resonance elastography is a quantitative MRI modality that can aid in diagnosis of disease by detecting altered tissue mechanical properties. While brain masking tools exist for common MRI sequences, such as T1-weighted and T2-weighted imagi...

Stiffness analysis of meningiomas using neural network-based inversion on MR Elastography.

Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Meningiomas are the most prevalent benign intracranial tumors, and surgical intervention is the primary treatment. The physical characteristics of meningiomas, such as tumor stiffness or consistency, play a crucial role in the surgical approach. This...

Quantification of tissue stiffness with magnetic resonance elastography and finite difference time domain (FDTD) simulation-based spatiotemporal neural network.

Magnetic resonance imaging
Quantification of tissue stiffness with magnetic resonance elastography (MRE) is an inverse problem that is sensitive to noise. Conventional methods for the purpose include direct inversion (DI) and local frequency estimation (LFE). In this study, we...

Identifying liver cirrhosis in patients with chronic hepatitis B: an interpretable machine learning algorithm based on LSM.

Annals of medicine
BACKGROUND: Chronic hepatitis B (CHB) is a common cause of liver cirrhosis (LC), a condition associated with an unfavourable prognosis. Therefore, timely diagnosis of LC in CHB patients is crucial.

ELTIRADS framework for thyroid nodule classification integrating elastography, TIRADS, and radiomics with interpretable machine learning.

Scientific reports
Early detection of malignant thyroid nodules is crucial for effective treatment, but traditional diagnostic methods face challenges such as variability in expert opinions and limited integration of advanced imaging techniques. This prospective cohort...

Deep Learning for High Speed Optical Coherence Elastography With a Fiber Scanning Endoscope.

IEEE transactions on medical imaging
Tissue stiffness is related to soft tissue pathologies and can be assessed through palpation or via clinical imaging systems, e.g., ultrasound or magnetic resonance imaging. Typically, the image based approaches are not suitable during interventions,...

Machine learning-based disease risk stratification and prediction of metabolic dysfunction-associated fatty liver disease using vibration-controlled transient elastography: Result from NHANES 2021-2023.

BMC gastroenterology
BACKGROUND: Metabolic dysfunction-associated fatty liver disease (MAFLD) is a common chronic liver disease and represents a significant public health issue. Nevertheless, current risk stratification methods remain inadequate. The study aimed to use m...

Predicting metabolic dysfunction associated steatotic liver disease using explainable machine learning methods.

Scientific reports
Early and accurate identification of patients at high risk of metabolic dysfunction-associated steatotic liver disease (MASLD) is critical to prevent and improve prognosis potentially. We aimed to develop and validate an explainable prediction model ...