AIMC Topic: Pregnancy

Clear Filters Showing 151 to 160 of 1119 articles

Automatic Measurement of Frontomaxillary Facial Angle in Fetal Ultrasound Images Using Deep Learning.

Sensors (Basel, Switzerland)
Accurate measurement of frontomaxillary facial (FMF) angles in prenatal ultrasound (US) scans plays a pivotal role in the screening of trisomy 21. Nevertheless, this intricate procedure heavily relies on the proficiency of the ultrasonographer and te...

Development and application of a machine learning-based antenatal depression prediction model.

Journal of affective disorders
BACKGROUND: Antenatal depression (AND), occurring during pregnancy, is associated with severe outcomes. However, there is a lack of objective and universally applicable prediction methods for AND in clinical practice. We leveraged sociodemographic an...

Interpretable Machine Learning Model for Predicting Postpartum Depression: Retrospective Study.

JMIR medical informatics
BACKGROUND: Postpartum depression (PPD) is a prevalent mental health issue with significant impacts on mothers and families. Exploring reliable predictors is crucial for the early and accurate prediction of PPD, which remains challenging.

Use of artificial intelligence to study the hospitalization of women undergoing caesarean section.

BMC public health
OBJECTIVE: The incidence of caesarean sections (CSs) has increased significantly in recent years, especially in developed countries. This study aimed to identify the factors that most influence the length of hospital stay (LOS) after a CS, using data...

Enhancing Small-for-Gestational-Age Prediction: Multi-Country Validation of Nuchal Thickness, Estimated Fetal Weight, and Machine Learning Models.

Prenatal diagnosis
OBJECTIVE: The first objective is to develop a nuchal thickness reference chart. The second objective is to compare rule-based algorithms and machine learning models in predicting small-for-gestational-age infants.

A machine learning based variable selection algorithm for binary classification of perinatal mortality.

PloS one
The identification of significant predictors with higher model performance is the key objective in classification domain. A machine learning-based variable selection technique termed as CARS-Logistic model is proposed by coupling competitive adaptive...

Predicting the risk of a high proportion of three/multiple pronuclei (3PN/MPN) zygotes in individual IVF cycles using comparative machine learning algorithms.

European journal of obstetrics, gynecology, and reproductive biology
BACKGROUND: The majority of machine learning applications in assisted reproduction have been focused on predicting the likelihood of pregnancy. In the present study, we aim to investigate which machine learning models are most effective in predicting...

A comprehensive scoping review on machine learning-based fetal echocardiography analysis.

Computers in biology and medicine
Fetal echocardiography (ultrasound of the fetal heart) plays a vital role in identifying heart defects, allowing clinicians to establish prenatal and postnatal management plans. Machine learning-based methods are emerging to support the automation of...

Clinical validation of explainable AI for fetal growth scans through multi-level, cross-institutional prospective end-user evaluation.

Scientific reports
We aimed to develop and evaluate Explainable Artificial Intelligence (XAI) for fetal ultrasound using actionable concepts as feedback to end-users, using a prospective cross-center, multi-level approach. We developed, implemented, and tested a deep-l...