AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Fetal Weight

Showing 1 to 10 of 14 articles

Clear Filters

Potential of Artificial Intelligence for Estimating Japanese Fetal Weights.

Acta medica Okayama
We developed an artificial intelligence (AI) method for estimating fetal weights of Japanese fetuses based on the gestational weeks and the bi-parietal diameter, abdominal circumference, and femur length. The AI comprised of neural network architectu...

Prediction of fetal weight based on back propagation neural network optimized by genetic algorithm.

Mathematical biosciences and engineering : MBE
Fetal weight is an important index to judge fetal development and ensure the safety of pregnant women. However, fetal weight cannot be directly measured. This study proposed a prediction model of fetal weight based on genetic algorithm to optimize ba...

Automatic Segmentation of the Fetus in 3D Magnetic Resonance Images Using Deep Learning: Accurate and Fast Fetal Volume Quantification for Clinical Use.

Pediatric cardiology
Magnetic resonance imaging (MRI) provides images for estimating fetal volume and weight, but manual delineations are time consuming. The aims were to (1) validate an algorithm to automatically quantify fetal volume by MRI; (2) compare fetal weight by...

Deep learning-based segmentation of whole-body fetal MRI and fetal weight estimation: assessing performance, repeatability, and reproducibility.

European radiology
OBJECTIVES: To develop a deep-learning method for whole-body fetal segmentation based on MRI; to assess the method's repeatability, reproducibility, and accuracy; to create an MRI-based normal fetal weight growth chart; and to assess the sensitivity ...

Deep learning for estimation of fetal weight throughout the pregnancy from fetal abdominal ultrasound.

American journal of obstetrics & gynecology MFM
BACKGROUND: Fetal weight is currently estimated from fetal biometry parameters using heuristic mathematical formulas. Fetal biometry requires measurements of the fetal head, abdomen, and femur. However, this examination is prone to inter- and intraob...

Artificial intelligence assistance for fetal development: evaluation of an automated software for biometry measurements in the mid-trimester.

BMC pregnancy and childbirth
BACKGROUND: This study presents CUPID, an advanced automated measurement software based on Artificial Intelligence (AI), designed to evaluate nine fetal biometric parameters in the mid-trimester. Our primary objective was to assess and compare the CU...

A machine learning model to predict spontaneous vaginal delivery failure for term nulliparous women: An observational study.

International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics
OBJECTIVE: This study aims to construct and evaluate a model to predict spontaneous vaginal delivery (SVD) failure in term nulliparous women based on machine learning algorithms.

Enhancing Small-for-Gestational-Age Prediction: Multi-Country Validation of Nuchal Thickness, Estimated Fetal Weight, and Machine Learning Models.

Prenatal diagnosis
OBJECTIVE: The first objective is to develop a nuchal thickness reference chart. The second objective is to compare rule-based algorithms and machine learning models in predicting small-for-gestational-age infants.

Prediction of clinical risk factors in pregnancy using optimized neural network scheme.

Placenta
Women should be aware of prenancy related health issues. A user-friendly model is developed in which the patients can use as well as clinicians to determine the risks associated with foetal development inside the womb, birth weight, whose effects are...