AIMC Topic: Principal Component Analysis

Clear Filters Showing 51 to 60 of 651 articles

An extensive experimental analysis for heart disease prediction using artificial intelligence techniques.

Scientific reports
The heart is an important organ that plays a crucial role in maintaining life. Unfortunately, heart disease is one of the major causes of mortality globally. Early and accurate detection can significantly improve the situation by enabling preventive ...

Compression-enabled interpretability of voxelwise encoding models.

PLoS computational biology
Voxelwise encoding models based on convolutional neural networks (CNNs) are widely used as predictive models of brain activity evoked by natural movies. Despite their superior predictive performance, the huge number of parameters in CNN-based models ...

A Novel Improvement of Feature Selection for Dynamic Hand Gesture Identification Based on Double Machine Learning.

Sensors (Basel, Switzerland)
Causal machine learning is an approach that combines causal inference and machine learning to understand and utilize causal relationships in data. In current research and applications, traditional machine learning and deep learning models always focu...

An efficient approach on risk factor prediction related to cardiovascular disease around Kumbakonam, Tamil Nadu, India, using unsupervised machine learning techniques.

Scientific reports
Nowadays, human beings suffer from varieties of diseases due to the environmental circumstances and their residing habits. Cardiovascular diseases (CVD) are the leading cause of mortality among all diseases. CVDs are heart-related diseases. In early ...

Contaminant detection in flexible polypropylene packaging waste using hyperspectral imaging and machine learning.

Waste management (New York, N.Y.)
Flexible plastic packaging (FPP) constitutes one of the largest post-consumer plastic streams processed in recycling facilities. To address the key challenges of its sorting and quality control, this study developed and tested a classification proced...

Incremental Classification for High-Dimensional EEG Manifold Representation Using Bidirectional Dimensionality Reduction and Prototype Learning.

IEEE journal of biomedical and health informatics
In brain-computer interface (BCI) systems, symmetric positive definite (SPD) manifold within Riemannian space has been frequently utilized to extract spatial features from electroencephalogram (EEG) signals. However, the intrinsic high dimensionality...

Exploring the impact of lenticels on the detection of soluble solids content in apples and pears using hyperspectral imaging and one-dimensional convolutional neural networks.

Food research international (Ottawa, Ont.)
In this work, the effect of lenticels on the predictive performance of apple and pear soluble solids content (SSC) models developed based on hyperspectral imaging (HSI) at 380-1010 nm was investigated for the first time. Variations in the spectral pr...

Improving stroke risk prediction by integrating XGBoost, optimized principal component analysis, and explainable artificial intelligence.

BMC medical informatics and decision making
The relevance of the study is due to the growing number of diseases of the cerebrovascular system, in particular stroke, which is one of the leading causes of disability and mortality in the world. To improve stroke risk prediction models in terms of...

Using near-infrared hyperspectral imaging combined with machine learning to predict the components and the origin of Radix Paeoniae Rubra.

Analytical methods : advancing methods and applications
The efficacy and safety of drugs are closely related to the geographical origin and quality of the raw materials. This study focuses on using near-infrared hyperspectral imaging (NIR-HSI) combined with machine learning algorithms to construct content...

A hybrid approach for intrusion detection in vehicular networks using feature selection and dimensionality reduction with optimized deep learning.

PloS one
Autonomous transportation systems have the potential to greatly impact the way we travel. A vital aspect of these systems is their connectivity, facilitated by intelligent transport applications. However, the safety ensured by the vehicular network c...