AIMC Topic: Protein Conformation

Clear Filters Showing 91 to 100 of 558 articles

A Mode Evolution Metric to Extract Reaction Coordinates for Biomolecular Conformational Transitions.

Journal of chemical theory and computation
The complex, multidimensional energy landscape of biomolecules makes the extraction of suitable, nonintuitive collective variables (CVs) that describe their conformational transitions challenging. At present, dimensionality reduction approaches and m...

Combined Physics- and Machine-Learning-Based Method to Identify Druggable Binding Sites Using SILCS-Hotspots.

Journal of chemical information and modeling
Identifying druggable binding sites on proteins is an important and challenging problem, particularly for cryptic, allosteric binding sites that may not be obvious from X-ray, cryo-EM, or predicted structures. The Site-Identification by Ligand Compet...

Integrative residue-intuitive machine learning and MD Approach to Unveil Allosteric Site and Mechanism for β2AR.

Nature communications
Allosteric drugs offer a new avenue for modern drug design. However, the identification of cryptic allosteric sites presents a formidable challenge. Following the allostery nature of residue-driven conformation transition, we propose a state-of-the-a...

Modelling protein complexes with crosslinking mass spectrometry and deep learning.

Nature communications
Scarcity of structural and evolutionary information on protein complexes poses a challenge to deep learning-based structure modelling. We integrate experimental distance restraints obtained by crosslinking mass spectrometry (MS) into AlphaFold-Multim...

Utilizing Molecular Dynamics Simulations, Machine Learning, Cryo-EM, and NMR Spectroscopy to Predict and Validate Protein Dynamics.

International journal of molecular sciences
Protein dynamics play a crucial role in biological function, encompassing motions ranging from atomic vibrations to large-scale conformational changes. Recent advancements in experimental techniques, computational methods, and artificial intelligence...

Teaching old docks new tricks with machine learning enhanced ensemble docking.

Scientific reports
We here introduce Ensemble Optimizer (EnOpt), a machine-learning tool to improve the accuracy and interpretability of ensemble virtual screening (VS). Ensemble VS is an established method for predicting protein/small-molecule (ligand) binding. Unlike...

PCP-GC-LM: single-sequence-based protein contact prediction using dual graph convolutional neural network and convolutional neural network.

BMC bioinformatics
BACKGROUND: Recently, the process of evolution information and the deep learning network has promoted the improvement of protein contact prediction methods. Nevertheless, still remain some bottleneck: (1) One of the bottlenecks is the prediction of o...

A Deep Learning Approach to Uncover Voltage-Gated Ion Channels' Intermediate States.

The journal of physical chemistry. B
Owing to recent advancements in cryo-electron microscopy, voltage-gated ion channels have gained a greater comprehension of their structural characteristics. However, a significant enigma remains unsolved for a large majority of these channels: their...

The path to the G protein-coupled receptor structural landscape: Major milestones and future directions.

British journal of pharmacology
G protein-coupled receptors (GPCRs) play a crucial role in cell function by transducing signals from the extracellular environment to the inside of the cell. They mediate the effects of various stimuli, including hormones, neurotransmitters, ions, ph...

Conformations of KRAS4B Affected by Its Partner Binding and G12C Mutation: Insights from GaMD Trajectory-Image Transformation-Based Deep Learning.

Journal of chemical information and modeling
Binding of partners and mutations highly affects the conformational dynamics of KRAS4B, which is of significance for deeply understanding its function. Gaussian accelerated molecular dynamics (GaMD) simulations followed by deep learning (DL) and prin...