AIMC Topic: Receptors, G-Protein-Coupled

Clear Filters Showing 41 to 50 of 80 articles

Screening of a novel free fatty acid receptor 1 (FFAR1) agonist peptide by phage display and machine learning based-amino acid substitution.

Biochemical and biophysical research communications
Free fatty acid receptor 1 (FFAR1 or GPR40) has attracted attention for the treatment of type 2 diabetes mellitus, and various small-molecule agonists have been developed. However, most FFAR1 agonists as well as endogenous ligands, such as linoleic a...

Trends in application of advancing computational approaches in GPCR ligand discovery.

Experimental biology and medicine (Maywood, N.J.)
G protein-coupled receptors (GPCRs) comprise the most important superfamily of protein targets in current ligand discovery and drug development. GPCRs are integral membrane proteins that play key roles in various cellular signaling processes. Therefo...

Spatiotemporal identification of druggable binding sites using deep learning.

Communications biology
Identification of novel protein binding sites expands druggable genome and opens new opportunities for drug discovery. Generally, presence or absence of a binding site depends on the three-dimensional conformation of a protein, making binding site id...

Comparative study between deep learning and QSAR classifications for TNBC inhibitors and novel GPCR agonist discovery.

Scientific reports
Machine learning is a well-known approach for virtual screening. Recently, deep learning, a machine learning algorithm in artificial neural networks, has been applied to the advancement of precision medicine and drug discovery. In this study, we perf...

Emulating Docking Results Using a Deep Neural Network: A New Perspective for Virtual Screening.

Journal of chemical information and modeling
Docking is one of the most important steps in virtual screening pipelines, and it is an established method for examining potential interactions between ligands and receptors. However, this method is computationally expensive, and it is often among th...

Machine learning and AI-based approaches for bioactive ligand discovery and GPCR-ligand recognition.

Methods (San Diego, Calif.)
In the last decade, machine learning and artificial intelligence applications have received a significant boost in performance and attention in both academic research and industry. The success behind most of the recent state-of-the-art methods can be...

Novel scaffold of natural compound eliciting sweet taste revealed by machine learning.

Food chemistry
Sugar replacement is still an active issue in the food industry. The use of structure-taste relationships remains one of the most rational strategy to expand the chemical space associated to sweet taste. A new machine learning model has been setup ba...

Machine Learning to Identify Flexibility Signatures of Class A GPCR Inhibition.

Biomolecules
We show that machine learning can pinpoint features distinguishing inactive from active states in proteins, in particular identifying key ligand binding site flexibility transitions in GPCRs that are triggered by biologically active ligands. Our anal...

A Machine Learning Approach for Drug-target Interaction Prediction using Wrapper Feature Selection and Class Balancing.

Molecular informatics
Drug-Target interaction (DTI) plays a crucial role in drug discovery, drug repositioning and understanding the drug side effects which helps to identify new therapeutic profiles for various diseases. However, the exponential growth in the genomic and...

Integrated structural modeling and super-resolution imaging resolve GPCR oligomers.

Progress in molecular biology and translational science
Formation of G protein-coupled receptors (GPCRs) dimers and higher order oligomers represents a key mechanism in pleiotropic signaling, yet how individual protomers function within oligomers remains poorly understood. For the Class A/rhodopsin subfam...