AIMC Topic: RNA, Guide, CRISPR-Cas Systems

Clear Filters Showing 11 to 20 of 42 articles

Deep learning and CRISPR-Cas13d ortholog discovery for optimized RNA targeting.

Cell systems
Effective and precise mammalian transcriptome engineering technologies are needed to accelerate biological discovery and RNA therapeutics. Despite the promise of programmable CRISPR-Cas13 ribonucleases, their utility has been hampered by an incomplet...

A fusion framework of deep learning and machine learning for predicting sgRNA cleavage efficiency.

Computers in biology and medicine
CRISPR/Cas9 system is a powerful tool for genome editing. Numerous studies have shown that sgRNAs can strongly affect the efficiency of editing. However, it is still not clear what rules should be followed for designing sgRNA with high cleavage effic...

Prediction of on-target and off-target activity of CRISPR-Cas13d guide RNAs using deep learning.

Nature biotechnology
Transcriptome engineering applications in living cells with RNA-targeting CRISPR effectors depend on accurate prediction of on-target activity and off-target avoidance. Here we design and test ~200,000 RfxCas13d guide RNAs targeting essential genes i...

Deep learning models to predict the editing efficiencies and outcomes of diverse base editors.

Nature biotechnology
Applications of base editing are frequently restricted by the requirement for a protospacer adjacent motif (PAM), and selecting the optimal base editor (BE) and single-guide RNA pair (sgRNA) for a given target can be difficult. To select for BEs and ...

AttCRISPR: a spacetime interpretable model for prediction of sgRNA on-target activity.

BMC bioinformatics
BACKGROUND: More and more Cas9 variants with higher specificity are developed to avoid the off-target effect, which brings a significant volume of experimental data. Conventional machine learning performs poorly on these datasets, while the methods b...

Easy-Prime: a machine learning-based prime editor design tool.

Genome biology
Prime editing is a revolutionary genome-editing technology that can make a wide range of precise edits in DNA. However, designing highly efficient prime editors (PEs) remains challenging. We develop Easy-Prime, a machine learning-based program traine...

Enhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learning.

Nature communications
The design of CRISPR gRNAs requires accurate on-target efficiency predictions, which demand high-quality gRNA activity data and efficient modeling. To advance, we here report on the generation of on-target gRNA activity data for 10,592 SpCas9 gRNAs. ...

Machine learning based CRISPR gRNA design for therapeutic exon skipping.

PLoS computational biology
Restoring gene function by the induced skipping of deleterious exons has been shown to be effective for treating genetic disorders. However, many of the clinically successful therapies for exon skipping are transient oligonucleotide-based treatments ...

sgRNACNN: identifying sgRNA on-target activity in four crops using ensembles of convolutional neural networks.

Plant molecular biology
We proposed an ensemble convolutional neural network model to identify sgRNA high on-target activity in four crops and we used one-hot encoding and k-mers for sequence encoding. As an important component of the CRISPR/Cas9 system, single-guide RNA (s...

Determinants of Base Editing Outcomes from Target Library Analysis and Machine Learning.

Cell
Although base editors are widely used to install targeted point mutations, the factors that determine base editing outcomes are not well understood. We characterized sequence-activity relationships of 11 cytosine and adenine base editors (CBEs and AB...