AIMC Topic: RNA

Clear Filters Showing 21 to 30 of 339 articles

RBPsuite 2.0: an updated RNA-protein binding site prediction suite with high coverage on species and proteins based on deep learning.

BMC biology
BACKGROUND: RNA-binding proteins (RBPs) play crucial roles in many biological processes, and computationally identifying RNA-RBP interactions provides insights into the biological mechanism of diseases associated with RBPs.

DHUpredET: A comparative computational approach for identification of dihydrouridine modification sites in RNA sequence.

Analytical biochemistry
Laboratory-based detection of D sites is laborious and expensive. In this study, we developed effective machine learning models employing efficient feature encoding methods to identify D sites. Initially, we explored various state-of-the-art feature ...

RNA structure prediction using deep learning - A comprehensive review.

Computers in biology and medicine
In computational biology, accurate RNA structure prediction offers several benefits, including facilitating a better understanding of RNA functions and RNA-based drug design. Implementing deep learning techniques for RNA structure prediction has led ...

RNA-protein interaction prediction using network-guided deep learning.

Communications biology
Accurate computational determination of RNA-protein interactions remains challenging, particularly when encountering unknown RNAs and proteins. The limited number of RNAs and their flexibility constrained the effectiveness of the deep-learning models...

Identifying RNA-small Molecule Binding Sites Using Geometric Deep Learning with Language Models.

Journal of molecular biology
RNAs are emerging as promising therapeutic targets, yet identifying small molecules that bind to them remains a significant challenge in drug discovery. This underscores the crucial role of computational modeling in predicting RNA-small molecule bind...

Deep learning for RNA structure prediction.

Current opinion in structural biology
Predicting RNA structures from sequences with computational approaches is of vital importance in RNA biology considering the high costs of experimental determination. AI methods have revolutionized this field in recent years, enabling RNA structure p...

ERNIE-ac4C: A Novel Deep Learning Model for Effectively Predicting N4-acetylcytidine Sites.

Journal of molecular biology
RNA modifications are known to play a critical role in gene regulation and cellular processes. Specifically, N4-acetylcytidine (ac4C) modification has emerged as a significant marker involved in mRNA translation efficiency, stability, and various dis...

ZeRPI: A graph neural network model for zero-shot prediction of RNA-protein interactions.

Methods (San Diego, Calif.)
RNA-protein interactions are crucial for biological functions across multiple levels. RNA binding proteins (RBPs) intricately engage in diverse biological processes through specific RNA molecule interactions. Previous studies have revealed the indisp...

The prediction of RNA-small-molecule ligand binding affinity based on geometric deep learning.

Computational biology and chemistry
Small molecule-targeted RNA is an emerging technology that plays a pivotal role in drug discovery and inhibitor design, with widespread applications in disease treatment. Consequently, predicting RNA-small-molecule ligand interactions is crucial. Wit...

Enhanced Sampling Simulations of RNA-Peptide Binding Using Deep Learning Collective Variables.

Journal of chemical information and modeling
Enhanced sampling (ES) simulations of biomolecular recognition, such as binding small molecules to proteins and nucleic acid targets, protein-protein association, and protein-nucleic acid interactions, have gained significant attention in the simulat...