Journal of medical engineering & technology
38625408
Sleep apnoea is a common disorder affecting sleep quality by obstructing the respiratory airway. This disorder can also be correlated to certain diseases like stroke, depression, neurocognitive disorder, non-communicable disease, etc. We implemented ...
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
38082822
Characterization of sleep stages is essential in the diagnosis of sleep-related disorders but relies on manual scoring of overnight polysomnography (PSG) recordings, which is onerous and labor-intensive. Accordingly, we aimed to develop an accurate d...
Automatic deep-learning models used for sleep scoring in children with obstructive sleep apnea (OSA) are perceived as black boxes, limiting their implementation in clinical settings. Accordingly, we aimed to develop an accurate and interpretable deep...
OBJECTIVES: The aim of this study is to propose a deep learning-based model using craniofacial photographs for automatic obstructive sleep apnea (OSA) detection and to perform design explainability tests to investigate important craniofacial regions ...
BMC medical informatics and decision making
37735681
BACKGROUND: One of the most common sleep disorders is sleep apnea syndrome. To diagnose sleep apnea syndrome, polysomnography is typically used, but it has limitations in terms of labor, cost, and time. Therefore, studies have been conducted to devel...
Physical and engineering sciences in medicine
37982985
Sleep apnea is a common sleep disorder. Traditional testing and diagnosis heavily rely on the expertise of physicians, as well as analysis and statistical interpretation of extensive sleep testing data, resulting in time-consuming and labor-intensive...
BACKGROUND: /Objective: Automatic apnea/hypopnea events classification, crucial for clinical applications, often faces challenges, particularly in hypopnea detection. This study aimed to evaluate the efficiency of a combined approach using nasal resp...
With the increasing prevalence of machine learning in critical fields like healthcare, ensuring the safety and reliability of these systems is crucial. Estimating uncertainty plays a vital role in enhancing reliability by identifying areas of high an...
BACKGROUND: Hypertrophic cardiomyopathy (HCM) is often concomitant with sleep-disordered breathing (SDB), which can cause adverse cardiovascular events. Although an appropriate approach to SDB prevents cardiac remodelling, detection of concomitant SD...
IEEE transactions on bio-medical engineering
38498753
Obstructive sleep apnea (OSA) is a common, underdiagnosed sleep-related breathing disorder with serious health implications Objective - We propose a deep transfer learning approach for sleep stage classification and sleep apnea (SA) detection using w...