The goal of this study was to develop a deep learning-based algorithm to predict temporomandibular joint (TMJ) disc perforation based on the findings of magnetic resonance imaging (MRI) and to validate its performance through comparison with previous...
This study proposes a deep learning model for cortical bone segmentation in the mandibular condyle head using cone-beam computed tomography (CBCT) and an automated method for measuring cortical thickness with a color display based on the segmentation...
OBJECTIVES: This study aimed to develop models that can automatically detect anterior disc displacement (ADD) of the temporomandibular joint (TMJ) on MRIs before orthodontic treatment to reduce the risk of developing serious complications after treat...
OBJECTIVES: This study aimed to develop a diagnostic support tool using pretrained models for classifying panoramic images of the temporomandibular joint (TMJ) into normal and osteoarthritis (OA) cases.
Temporomandibular disorders are typically accompanied by a number of clinical manifestations that involve pain and dysfunction of the masticatory muscles and temporomandibular joint. The most important subgroup of articular abnormalities in patients ...
OBJECTIVE: Management of the temporomandibular joint (TMJ) following condylar resection remains challenging in the field of mandibular reconstruction. A simple reconstruction of the TMJ with a contoured end of a fibular graft placed into the joint sp...
This study investigated the usefulness of deep learning-based automatic detection of anterior disc displacement (ADD) from magnetic resonance imaging (MRI) of patients with temporomandibular joint disorder (TMD). Sagittal MRI images of 2520 TMJs were...
This study proposes a new diagnostic tool for automatically extracting discriminative features and detecting temporomandibular joint disc displacement (TMJDD) accurately with artificial intelligence. We analyzed the structural magnetic resonance imag...
OBJECTIVES: Temporomandibular joint (TMJ) internal derangements (ID) represent the most prevalent temporomandibular joint disorder (TMD) in the population and its diagnosis typically relies on magnetic resonance imaging (MRI). TMJ articular discs in ...
OBJECTIVE: Quantitative analysis of the volume and shape of the temporomandibular joint (TMJ) using cone-beam computed tomography (CBCT) requires accurate segmentation of the mandibular condyles and the glenoid fossae. This study aimed to develop and...