The Annals of otology, rhinology, and laryngology
Mar 1, 2021
OBJECTIVE: Computer-aided analysis of laryngoscopy images has potential to add objectivity to subjective evaluations. Automated classification of biomedical images is extremely challenging due to the precision required and the limited amount of annot...
BACKGROUND AND AIMS: The aim of our study was to develop and evaluate a deep learning algorithm for the automated detection of small-bowel ulcers in Crohn's disease (CD) on capsule endoscopy (CE) images of individual patients.
Compared with conventional gastroscopy which is invasive and painful, wireless capsule endoscopy (WCE) can provide noninvasive examination of gastrointestinal (GI) tract. The WCE video can effectively support physicians to reach a diagnostic decision...
Detection of abnormalities in wireless capsule endoscopy (WCE) images is a challenging task. Typically, these images suffer from low contrast, complex background, variations in lesion shape and color, which affect the accuracy of their segmentation a...
A novel computer-aided detection method based on deep learning framework was proposed to detect small intestinal ulcer and erosion in wireless capsule endoscopy (WCE) images. To the best of our knowledge, this is the first time that deep learning fra...