AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Water Purification

Showing 1 to 10 of 168 articles

Clear Filters

Comparative study on antibacterial activities and removal of iron ions from water using novel modified sand with silver through the hydrothermal technique.

Scientific reports
The hydrothermal-calcination technique was used to modify raw sand with silver (Ag) at different weight percentages: 2%, 5%, and 10% using silver nitrate. The raw and sand-coated Ag nanoparticle samples were analyzed using various techniques, includi...

Design optimization and predictive modeling for TSS in mega surface WWTPs: A machine learning approach.

Journal of environmental management
Surface wastewater originates from various sources, including domestic, commercial, and industrial activities, and contains a mix of organic and inorganic wastes along with suspended and dissolved solids that require effective treatment. This study p...

Bayesian Optimization-Enhanced Reinforcement learning for Self-adaptive and multi-objective control of wastewater treatment.

Bioresource technology
Controllers of wastewater treatment plants (WWTPs) often struggle to maintain optimal performance due to dynamic influent characteristics and the need to balance multiple operational objectives. In this study, Reinforcement Learning (RL) algorithms a...

Data-Driven Insights into Resin Screening for Targeted Per- and Polyfluoroalkyl Substances Removal Using Machine Learning.

Environmental science & technology
In this study, we address the challenge of screening resins and optimizing operation conditions for the removal of 43 perfluoroalkyl and polyfluoroalkyl substances (PFASs), spanning both long- and short-chain fluorocarbon variants, across diverse wat...

Enhanced nitrogen prediction and mechanistic process analysis in high-salinity wastewater treatment using interpretable machine learning approach.

Bioresource technology
This study introduces an interpretable machine learning framework to predict nitrogen removal in membrane bioreactor (MBR) treating high-salinity wastewater. By integrating Shapley additive explanations (SHAP) with Categorical Boosting (CatBoost), we...

DFT-assisted machine learning for polyester membrane design in textile wastewater recovery applications.

Water research
Resource recovery from textile wastewater has attracted increasing interest because it simultaneously addresses wastewater treatment and maximizes the utilization of the residual dyes. Although polyester membranes have demonstrated great potential fo...

Prediction of chlorination degradation rate of emerging contaminants based on machine learning models.

Environmental pollution (Barking, Essex : 1987)
Assessing the degradation of emerging contaminants in water through chlorination is crucial for regulatory monitoring of these contaminants. In this study, we developed a machine learning model to predict the apparent second-order reaction rate const...

Biohybrid microrobots with a Spirulina skeleton and MOF skin for efficient organic pollutant adsorption.

Nanoscale
Wastewater treatment is a key component in maintaining environmental health and sustainable urban life, and the rapid development of micro/nanotechnology has opened up new avenues for more efficient treatment processes. This work developed a novel bi...

Electrochemical activation of alum sludge for the adsorption of lead (Pb(II)) and arsenic (As): Mechanistic insights and machine learning (ML) analysis.

Bioresource technology
Alum sludge (AlS) has emerged as an effective adsorbent for anionic contaminants, with traditional activation methods like acid/base treatments and calcination employed to enhance its adsorption capacity. However, these approaches encounter significa...

Machine Learning-Assisted Molecular Structure Embedding for Accurate Prediction of Emerging Contaminant Removal by Ozonation Oxidation.

Environmental science & technology
Ozone has demonstrated high efficacy in depredating emerging contaminants (ECs) during drinking water treatment. However, traditional quantitative structure-activation relationship (QSAR) models often fall short in effectively normalizing and charact...