External validation of deep learning-derived 18F-FDG PET/CT delta biomarkers for loco-regional control in head and neck cancer.
Journal:
Acta oncologica (Stockholm, Sweden)
Published Date:
Aug 30, 2025
Abstract
BACKGROUND AND PURPOSE: Delta biomarkers that reflect changes in tumour burden over time can support personalised follow-up in head and neck cancer. However, their clinical use can be limited by the need for manual image segmentation. This study externally evaluates a deep learning model for automatic determination of volume change from serial 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) scans to stratify patients by loco-regional outcome. Patient/material and methods: An externally developed deep learning algorithm for tumour segmentation was applied to pre- and post-radiotherapy (RT, with or without concomitant chemoradiotherapy) PET/CT scans of 50 consecutive head and neck cancer patients from The Christie NHS Foundation Trust, UK. The model, originally trained on pre-treatment scans from a different institution, was deployed to derive tumour volumes at both time points. The AI-derived change in tumour volume (ΔPET-Gross tumour volume (GTV)) was calculated for each patient. Kaplan-Meier analysis assessed loco-regional control based on ΔPET-GTV, dichotomised at the cohort median. In a separate secondary analysis confined to the pre‑treatment scans, a radiation oncologist qualitatively evaluated the AI‑generated PET‑GTV contours.