Immunohistochemistry (IHC) examination is essential to determine the tumour subtypes, provide key prognostic factors, and develop personalized treatment plans for breast cancer. However, compared to Hematoxylin and Eosin (H&E) staining, the preparati...
Building deep learning models that can rapidly segment whole slide images (WSIs) using only a handful of training samples remains an open challenge in computational pathology. The difficulty lies in the histological images themselves: many morphologi...
Accurate segmentation of cardiac structures in echocardiography videos is vital for diagnosing heart disease. However, challenges such as speckle noise, low spatial resolution, and incomplete video annotations hinder the accuracy and efficiency of se...
Near-infrared spectral tomography (NIRST) is a non-invasive imaging technique that provides functional information about biological tissues. Due to diffuse light propagation in tissue and limited boundary measurements, NIRST image reconstruction pres...
Recently, the advent of Vision Transformer (ViT) has brought substantial advancements in 3D benchmarks, particularly in 3D volumetric medical image segmentation (Vol-MedSeg). Concurrently, multi-layer perceptron (MLP) network has regained popularity ...
The limited availability of labeled data has driven advancements in semi-supervised learning for medical image segmentation. Modern large-scale models tailored for general segmentation, such as the Segment Anything Model (SAM), have revealed robust g...
Cardiac motion estimation is important for assessing the contractile health of the heart, and performing this in 3D can provide advantages due to the complex 3D geometry and motions of the heart. Deep learning image registration (DLIR) is a robust wa...
Federated learning (FL) methods for multi-organ segmentation in CT scans are gaining popularity, but generally require numerous rounds of parameter exchange between a central server and clients. This repetitive sharing of parameters between server an...
The functional analysis of the left atrium (LA) is important for evaluating cardiac health and understanding diseases like atrial fibrillation. Cine MRI is ideally placed for the detailed 3D characterization of LA motion and deformation but is lackin...
Supervised Deep-Learning (DL)-based reconstruction algorithms have shown state-of-the-art results for highly-undersampled dynamic Magnetic Resonance Imaging (MRI) reconstruction. However, the requirement of excessive high-quality ground-truth data hi...