AI Medical Compendium Journal:
Journal of neural engineering

Showing 11 to 20 of 242 articles

DP-MP: a novel cross-subject fatigue detection framework with DANN-based prototypical representation and mix-up pairwise learning.

Journal of neural engineering
. Electroencephalography (EEG) is widely recognized as an effective method for detecting fatigue. However, practical applications of EEG for fatigue detection in real-world scenarios are often challenging, particularly in cases involving subjects not...

LGFormer: integrating local and global representations for EEG decoding.

Journal of neural engineering
Electroencephalography (EEG) decoding is challenging because of its temporal variability and low signal-to-noise ratio, which complicate the extraction of meaningful information from signals. Although convolutional neural networks (CNNs) effectively ...

The NERVE-ML (neural engineering reproducibility and validity essentials for machine learning) checklist: ensuring machine learning advances neural engineering.

Journal of neural engineering
Machine learning's (MLs) ability to capture intricate patterns makes it vital in neural engineering research. With its increasing use, ensuring the validity and reproducibility of ML methods is critical. Unfortunately, this has not always been the ca...

Select for better learning: identifying high-quality training data for a multimodal cyclic transformer.

Journal of neural engineering
. Tonic-clonic seizures (TCSs), which present a significant risk for sudden unexpected death in epilepsy, require accurate detection to enable effective long-term monitoring. Previous studies have demonstrated the advantages of multimodal seizure det...

Detection of freely moving thoughts using SVM and EEG signals.

Journal of neural engineering
Freely moving thought is a type of thinking that shifts from one topic to another without any overarching direction or aim. The ability to detect when freely moving thought occurs may help us promote its beneficial outcomes, such as for creative thin...

GraphSleepFormer: a multi-modal graph neural network for sleep staging in OSA patients.

Journal of neural engineering
Obstructive sleep apnea (OSA) is a prevalent sleep disorder. Accurate sleep staging is one of the prerequisites in the study of sleep-related disorders and the evaluation of sleep quality. We introduce a novel GraphSleepFormer (GSF) network designed ...

Explainable multiscale temporal convolutional neural network model for sleep stage detection based on electroencephalogram activities.

Journal of neural engineering
Humans spend a significant portion of their lives in sleep (an essential driver of body metabolism). Moreover, as sleep deprivation could cause various health complications, it is crucial to develop an automatic sleep stage detection model to facilit...

Deep learning models as learners for EEG-based functional brain networks.

Journal of neural engineering
Functional brain network (FBN) methods are commonly integrated with deep learning (DL) models for EEG analysis. Typically, an FBN is constructed to extract features from EEG data, which are then fed into a DL model for further analysis. Beyond this t...

Predicting EEG seizures using graded spiking neural networks.

Journal of neural engineering
To develop and evaluate a novel, non-patient-specific epileptic seizure prediction system using graded spiking neural networks (GSNNs) implemented on Intel's Loihi 2 neuromorphic processor, addressing the challenges of real-time, energy-efficient pre...

Geometric neural network based on phase space for BCI-EEG decoding.

Journal of neural engineering
The integration of Deep Learning (DL) algorithms on brain signal analysis is still in its nascent stages compared to their success in fields like Computer Vision. This is particularly true for Brain-computer interface (BCI), where the brain activity ...