AI Medical Compendium Journal:
The Knee

Showing 1 to 10 of 17 articles

Application of machine learning in the context of reoperation, outcome and management after ACL reconstruction - A systematic review.

The Knee
INTRODUCTION: Machine learning-based tools are becoming increasingly popular in clinical practice. They offer new possibilities but are also limited in their reliability and accuracy.

Patellar tilt calculation utilizing artificial intelligence on CT knee imaging.

The Knee
BACKGROUND: In the diagnosis of patellar instability, three-dimensional (3D) imaging enables measurement of a wide range of metrics. However, measuring these metrics can be time-consuming and prone to error due to conducting 2D measurements on 3D obj...

A machine learning approach using gait parameters to cluster TKA subjects into stable and unstable joints for discovery analysis.

The Knee
BACKGROUND: Patient-reported joint instability after total knee arthroplasty (TKA) is difficult to quantify objectively. Here, we apply machine learning to cluster TKA subjects using nine literature-proposed gait parameters as knee instability predic...

Comparison of predictive models for knee pain and analysis of individual and physical activity variables using interpretable machine learning.

The Knee
BACKGROUND: Knee pain is associated with not only individual factors such as age and obesity but also physical activity factors such as occupational activities and exercise, which has a significant impact on the lives of adults and the elderly.

An AI-based system for fully automated knee alignment assessment in standard AP knee radiographs.

The Knee
BACKGROUND: Accurate assessment of knee alignment in pre- and post-operative radiographs is crucial for knee arthroplasty planning and evaluation. Current methods rely on manual alignment assessment, which is time-consuming and error-prone. This stud...

Deep learning for tibial plateau fracture detection and classification.

The Knee
BACKGROUND: Deep learning (DL) has been shown to be successful in interpreting radiographs and aiding in fracture detection and classification. However, no study has aimed to develop a computer vision model for tibia plateau fractures using the Schat...

A deep learning and statistical shape modeling-based method for assessing intercondylar notch volume in anterior cruciate ligament reconstruction.

The Knee
BACKGROUND: Anterior cruciate ligament (ACL) reconstruction is a widely performed procedure for ACL injury, but there are several factors which may lead to re-rupture or clinical failure. An intercondylar notch (or fossa) that is narrower may increas...

Artificial intelligence and machine learning in knee arthroplasty.

The Knee
BACKGROUND: Artificial intelligence (AI) and its subset, machine learning (ML), have significantly impacted clinical medicine, particularly in knee arthroplasty (KA). These technologies utilize algorithms for tasks such as predictive analytics and im...

Machine learning is better than surgeons at assessing unicompartmental knee replacement radiographs.

The Knee
BACKGROUND: Poor results occasionally occur after unicompartmental knee replacement (UKR). It is often difficult, even for experienced surgeons, to determine why patients have poor outcomes from radiographs. The aim was to compare the ability of expe...