AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Aerosols

Showing 1 to 10 of 32 articles

Clear Filters

Separating Daily 1 km PM Inorganic Chemical Composition in China since 2000 via Deep Learning Integrating Ground, Satellite, and Model Data.

Environmental science & technology
Fine particulate matter (PM) chemical composition has strong and diverse impacts on the planetary environment, climate, and health. These effects are still not well understood due to limited surface observations and uncertainties in chemical model si...

Integrating low-cost sensor monitoring, satellite mapping, and geospatial artificial intelligence for intra-urban air pollution predictions.

Environmental pollution (Barking, Essex : 1987)
There is a growing need to apply geospatial artificial intelligence analysis to disparate environmental datasets to find solutions that benefit frontline communities. One such critically needed solution is the prediction of health-relevant ambient gr...

Exploring Global Land Coarse-Mode Aerosol Changes from 2001-2021 Using a New Spatiotemporal Coaction Deep-Learning Model.

Environmental science & technology
Coarse-mode aerosol optical depths (cAODs) are critical for understanding the impact of coarse particle sizes, especially dust aerosols, on climate. Currently, the limited data length and high uncertainty of satellite products diminish the applicabil...

Development of an automated photolysis rates prediction system based on machine learning.

Journal of environmental sciences (China)
Based on observed meteorological elements, photolysis rates (J-values) and pollutant concentrations, an automated J-values predicting system by machine learning (J-ML) has been developed to reproduce and predict the J-values of OD, NO, HONO, HO, HCHO...

Unmasking the sky: high-resolution PM prediction in Texas using machine learning techniques.

Journal of exposure science & environmental epidemiology
BACKGROUND: Although PM (fine particulate matter with an aerodynamic diameter less than 2.5 µm) is an air pollutant of great concern in Texas, limited regulatory monitors pose a significant challenge for decision-making and environmental studies.

Deep Learning with Pretrained Framework Unleashes the Power of Satellite-Based Global Fine-Mode Aerosol Retrieval.

Environmental science & technology
Fine-mode aerosol optical depth (fAOD) is a vital proxy for the concentration of anthropogenic aerosols in the atmosphere. Currently, the limited data length and high uncertainty of the satellite-based data diminish the applicability of fAOD for clim...

Quantification of Size-Binned Particulate Matter in Electronic Cigarette Aerosols Using Multi-Spectral Optical Sensing and Machine Learning.

Sensors (Basel, Switzerland)
To monitor health risks associated with vaping, we introduce a multi-spectral optical sensor powered by machine learning for real-time characterization of electronic cigarette aerosols. The sensor can accurately measure the mass of particulate matter...

Predictions of the Optical Properties of Brown Carbon Aerosol by Machine Learning with Typical Chromophores.

Environmental science & technology
The linkages between BrC optical properties and chemical composition remain inadequately understood, with quantified chromophores explaining less than 25% of ambient aerosol light absorption. This study characterized 38 typical chromophores in aeroso...

Particulate matter estimation using satellite datasets: a machine learning approach.

Environmental science and pollution research international
In the present work, it is the first time an interpretable machine learning model has been developed for the estimation of Particulate Matter 10 µm (PM) concentrations over India using Aerosol Optical Depth (AOD) from two different satellites, i.e. I...

Advancing low-cost air quality monitor calibration with machine learning methods.

Environmental pollution (Barking, Essex : 1987)
Low-cost monitors for measuring airborne contaminants have gained popularity due to their affordability, portability, and ease of use. However, they often exhibit significant biases compared to high-cost reference instruments. For optimal accuracy, t...