AIMC Topic: Allosteric Regulation

Clear Filters Showing 1 to 10 of 28 articles

'Intelligent' proteins.

Cellular and molecular life sciences : CMLS
We present an idea of protein molecules that challenges the traditional view of proteins as simple molecular machines and suggests instead that they exhibit a basic form of "intelligence". The idea stems from suggestions coming from Integrated Inform...

Molecular insights into the unique activation and allosteric modulation mechanisms of the human mas-related G-protein-coupled receptor X1.

International journal of biological macromolecules
MRGPRX1 plays dual roles in mediating nociception and pruritus, making it a promising target for alleviating itch and inhibiting pain. However, the mechanisms underlying MRGPRX1 activation and allosteric modulation remain poorly understood, posing si...

Therapeutic potential of allosteric HECT E3 ligase inhibition.

Cell
Targeting ubiquitin E3 ligases is therapeutically attractive; however, the absence of an active-site pocket impedes computational approaches for identifying inhibitors. In a large, unbiased biochemical screen, we discover inhibitors that bind a crypt...

Can Deep Learning Blind Docking Methods be Used to Predict Allosteric Compounds?

Journal of chemical information and modeling
Allosteric compounds offer an alternative mode of inhibition to orthosteric compounds with opportunities for selectivity and noncompetition. Structure-based drug design (SBDD) of allosteric compounds introduces complications compared to their orthost...

Identification of Novel Fourth-Generation Allosteric Inhibitors Targeting Inactive State of EGFR T790M/L858R/C797S and T790M/L858R Mutations: A Combined Machine Learning and Molecular Dynamics Approach.

The journal of physical chemistry. B
Targeted therapy with an allosteric inhibitor (AIs) is an important area of research in patients with epidermal growth factor receptor (EGFR) mutations. Current treatment of nonsmall cell lung cancer patients with EGFR mutations using orthosteric inh...

Study on SHP2 Conformational Transition and Structural Characterization of Its High-Potency Allosteric Inhibitors by Molecular Dynamics Simulations Combined with Machine Learning.

Molecules (Basel, Switzerland)
The src-homology 2 domain-containing phosphatase 2 (SHP2) is a human cytoplasmic protein tyrosine phosphatase that plays a crucial role in cellular signal transduction. Aberrant activation and mutations of SHP2 are associated with tumor growth and im...

MoCHI: neural networks to fit interpretable models and quantify energies, energetic couplings, epistasis, and allostery from deep mutational scanning data.

Genome biology
We present MoCHI, a tool to fit interpretable models using deep mutational scanning data. MoCHI infers free energy changes, as well as interaction terms (energetic couplings) for specified biophysical models, including from multimodal phenotypic data...

Integrative residue-intuitive machine learning and MD Approach to Unveil Allosteric Site and Mechanism for β2AR.

Nature communications
Allosteric drugs offer a new avenue for modern drug design. However, the identification of cryptic allosteric sites presents a formidable challenge. Following the allostery nature of residue-driven conformation transition, we propose a state-of-the-a...

Adaptive Workflows of Machine Learning Illuminate the Sequential Operation Mechanism of the TAK1's Allosteric Network.

Biochemistry
Allostery is a fundamental mechanism driving biomolecular processes that holds significant therapeutic concern. Our study rigorously investigates how two distinct machine-learning algorithms uniquely classify two already close-to-active DFG-in states...

Machine learning approaches in predicting allosteric sites.

Current opinion in structural biology
Allosteric regulation is a fundamental biological mechanism that can control critical cellular processes via allosteric modulator binding to protein distal functional sites. The advantages of allosteric modulators over orthosteric ones have sparked t...