AIMC Topic: Binding Sites

Clear Filters Showing 391 to 400 of 500 articles

BindingDB in 2024: a FAIR knowledgebase of protein-small molecule binding data.

Nucleic acids research
BindingDB (bindingdb.org) is a public, web-accessible database of experimentally measured binding affinities between small molecules and proteins, which supports diverse applications including medicinal chemistry, biochemical pathway annotation, trai...

iProtDNA-SMOTE: Enhancing protein-DNA binding sites prediction through imbalanced graph neural networks.

PloS one
Protein-DNA interactions play a crucial role in cellular biology, essential for maintaining life processes and regulating cellular functions. We propose a method called iProtDNA-SMOTE, which utilizes non-equilibrium graph neural networks along with p...

Machine and Deep Learning Methods for Predicting 3D Genome Organization.

Methods in molecular biology (Clifton, N.J.)
Three-dimensional (3D) chromatin interactions, such as enhancer-promoter interactions (EPIs), loops, topologically associating domains (TADs), and A/B compartments, play critical roles in a wide range of cellular processes by regulating gene expressi...

Improving generalizability of drug-target binding prediction by pre-trained multi-view molecular representations.

Bioinformatics (Oxford, England)
MOTIVATION: Most drugs start on their journey inside the body by binding the right target proteins. This is the reason that numerous efforts have been devoted to predicting the drug-target binding during drug development. However, the inherent divers...

Predicting bacterial transcription factor binding sites through machine learning and structural characterization based on DNA duplex stability.

Briefings in bioinformatics
Transcriptional factors (TFs) in bacteria play a crucial role in gene regulation by binding to specific DNA sequences, thereby assisting in the activation or repression of genes. Despite their central role, deciphering shape recognition of bacterial ...

MLSNet: a deep learning model for predicting transcription factor binding sites.

Briefings in bioinformatics
Accurate prediction of transcription factor binding sites (TFBSs) is essential for understanding gene regulation mechanisms and the etiology of diseases. Despite numerous advances in deep learning for predicting TFBSs, their performance can still be ...

An integrated machine-learning model to predict nucleosome architecture.

Nucleic acids research
We demonstrate that nucleosomes placed in the gene body can be accurately located from signal decay theory assuming two emitters located at the beginning and at the end of genes. These generated wave signals can be in phase (leading to well defined n...

Machine learning enables pan-cancer identification of mutational hotspots at persistent CTCF binding sites.

Nucleic acids research
CCCTC-binding factor (CTCF) is an insulator protein that binds to a highly conserved DNA motif and facilitates regulation of three-dimensional (3D) nuclear architecture and transcription. CTCF binding sites (CTCF-BSs) reside in non-coding DNA and are...

BertSNR: an interpretable deep learning framework for single-nucleotide resolution identification of transcription factor binding sites based on DNA language model.

Bioinformatics (Oxford, England)
MOTIVATION: Transcription factors are pivotal in the regulation of gene expression, and accurate identification of transcription factor binding sites (TFBSs) at high resolution is crucial for understanding the mechanisms underlying gene regulation. T...

Machine learning-assisted substrate binding pocket engineering based on structural information.

Briefings in bioinformatics
Engineering enzyme-substrate binding pockets is the most efficient approach for modifying catalytic activity, but is limited if the substrate binding sites are indistinct. Here, we developed a 3D convolutional neural network for predicting protein-li...