AIMC Topic: Binding Sites

Clear Filters Showing 441 to 450 of 500 articles

DeepMotifSyn: a deep learning approach to synthesize heterodimeric DNA motifs.

Briefings in bioinformatics
The cooperativity of transcription factors (TFs) is a widespread phenomenon in the gene regulation system. However, the interaction patterns between TF binding motifs remain elusive. The recent high-throughput assays, CAP-SELEX, have identified over ...

Epitome: predicting epigenetic events in novel cell types with multi-cell deep ensemble learning.

Nucleic acids research
The accumulation of large epigenomics data consortiums provides us with the opportunity to extrapolate existing knowledge to new cell types and conditions. We propose Epitome, a deep neural network that learns similarities of chromatin accessibility ...

Prediction of RBP binding sites on circRNAs using an LSTM-based deep sequence learning architecture.

Briefings in bioinformatics
Circular RNAs (circRNAs) are widely expressed in highly diverged eukaryotes. Although circRNAs have been known for many years, their function remains unclear. Interaction with RNA-binding protein (RBP) to influence post-transcriptional regulation is ...

High-resolution transcription factor binding sites prediction improved performance and interpretability by deep learning method.

Briefings in bioinformatics
Transcription factors (TFs) are essential proteins in regulating the spatiotemporal expression of genes. It is crucial to infer the potential transcription factor binding sites (TFBSs) with high resolution to promote biology and realize precision med...

Predicting MHC class I binder: existing approaches and a novel recurrent neural network solution.

Briefings in bioinformatics
Major histocompatibility complex (MHC) possesses important research value in the treatment of complex human diseases. A plethora of computational tools has been developed to predict MHC class I binders. Here, we comprehensively reviewed 27 up-to-date...

Computational prediction of the effect of amino acid changes on the binding affinity between SARS-CoV-2 spike RBD and human ACE2.

Proceedings of the National Academy of Sciences of the United States of America
The association of the receptor binding domain (RBD) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein with human angiotensin-converting enzyme 2 (hACE2) represents the first required step for cellular entry. SARS-CoV-2 ha...

SAResNet: self-attention residual network for predicting DNA-protein binding.

Briefings in bioinformatics
Knowledge of the specificity of DNA-protein binding is crucial for understanding the mechanisms of gene expression, regulation and gene therapy. In recent years, deep-learning-based methods for predicting DNA-protein binding from sequence data have a...

Explainability in transformer models for functional genomics.

Briefings in bioinformatics
The effectiveness of deep learning methods can be largely attributed to the automated extraction of relevant features from raw data. In the field of functional genomics, this generally concerns the automatic selection of relevant nucleotide motifs fr...

DeepDTAF: a deep learning method to predict protein-ligand binding affinity.

Briefings in bioinformatics
Biomolecular recognition between ligand and protein plays an essential role in drug discovery and development. However, it is extremely time and resource consuming to determine the protein-ligand binding affinity by experiments. At present, many comp...

Accurate prediction of inter-protein residue-residue contacts for homo-oligomeric protein complexes.

Briefings in bioinformatics
Protein-protein interactions play a fundamental role in all cellular processes. Therefore, determining the structure of protein-protein complexes is crucial to understand their molecular mechanisms and develop drugs targeting the protein-protein inte...