Biomimetic robots have gained attention recently for various applications ranging from resource hunting to search and rescue operations during disasters. Biological species are known to intuitively learn from the environment, gather and process data,...
This paper presents a fully coupled electro-hydraulic model of a bio-inspired climbing robot actuated by fluidic artificial muscles (FAMs). This analysis expands upon previous FAM literature by considering not only the force and contraction character...
Wirelessly controlled nanoscale robots have the potential to be used for both in vitro and in vivo biomedical applications. So far, the vast majority of reported micro- and nanoscale swimmers have taken the approach of mimicking the rotary motion of ...
Bio-inspired robotics is a promising design strategy for mobile robots. Jumping is an energy efficient locomotion gait for traversing difficult terrain. Inspired by the jumping and flying behavior of the desert locust, we have recently developed a mi...
Inspired by the morphology characteristics of the earthworms and the excellent deformability of origami structures, this research creates a novel earthworm-like locomotion robot through exploiting the origami techniques. In this innovation, appropria...
Many kinds of bio-inspired tasks have been tested with swarm robotics and task partitioning is one of the challenging subjects. In nature, it is well known that some colonies of social insects such as honeybees, termites, and ants use task partitioni...
Soft robotic actuators offer many advantages over their rigid counterparts, but they often are unable to apply highly localized point loads. In contrast, many invertebrates have not only evolved extremely strong "hybrid appendages" that are composed ...
The aim of this study is to derive a guidance law by which an unmanned aerial system(s) (UAS) can pursue a moving target at a constant distance, while concealing its own motion. We derive a closed-form solution for the trajectory of the UAS by imposi...
Flapping wings can pitch passively about their pitching axes due to their flexibility, inertia, and aerodynamic loads. A shift in the pitching axis location can dynamically alter the aerodynamic loads, which in turn changes the passive pitching motio...
Short-term visual prediction is important both in biology and robotics. It allows us to anticipate upcoming states of the environment and therefore plan more efficiently. In theoretical neuroscience, liquid state machines have been proposed as a biol...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.