The successful replication of the intricate architecture of human tissues remains a major challenge in the biomedical area. Three-dimensional (3D) bioprinting has emerged as a promising approach for the biofabrication of living tissue analogues, taki...
Three-dimensional (3D) bioprinting technology offers great potential in the treatment of tissue and organ damage. Conventional approaches generally rely on a large form factor desktop bioprinter to create in vitro 3D living constructs before introduc...
This work reports the design and validation of an innovative automatic photo-cross-linking device for robotic-based in situ bioprinting. Photo-cross-linking is the most promising polymerization technique when considering biomaterial deposition direct...
The three-dimensional (3D) bioprinting technologies are suitable for biomedical applications owing to their ability to manufacture complex and high-precision tissue constructs. However, the slow printing speed of current layer-by-layer (bio)printing ...
BACKGROUND: The recent advancements and detailed studies in the field of 3D bioprinting have made it a promising avenue in the field of organ shortage, where many patients die awaiting transplantation. The main challenges bioprinting faces are precis...
Biofabrication is potentially an inherently sustainable manufacturing process of bio-hybrid systems based on biomaterials embedded with cell communities. These bio-hybrids promise to augment the sustainability of various human activities, ranging fro...
3D (Bio)printing is a highly effective method for fabricating tissue engineering scaffolds, renowned for their exceptional precision and control. Artificial intelligence (AI) has become a crucial technology in this field, capable of learning and repl...
Current research practice for optimizing bioink involves exhaustive experimentation with multi-material composition for determining the printability, shape fidelity and biocompatibility. Predicting bioink properties can be beneficial to the research ...
Robotic 3D bioprinting is a rapidly advancing technology with applications in organ fabrication, tissue restoration, and pharmaceutical testing. While the stepwise generation of organs characterizes bioprinting, challenges such as non-linear material...
In vivo bioprinting strategies aim at facilitating immediate integration of engineered tissues with the host's biological system. As integral parts of current bioprinting technologies, bioinks and robotics should be holistically considered for new bi...