BACKGROUND: Haemorrhage transformation (HT) is a serious complication of intravenous thrombolysis (IVT) in acute ischaemic stroke (AIS). Accurate and timely prediction of the risk of HT before IVT may change the treatment decision and improve clinica...
PURPOSE: Clinical risk scores are essential for predicting outcomes in stroke patients. The advancements in deep learning (DL) techniques provide opportunities to develop prediction applications using magnetic resonance (MR) images. We aimed to devel...
BACKGROUND: Alberta Stroke Program Early Computed Tomography Score (ASPECTS) is a standardized semi-quantitative method for early ischemic changes in acute ischemic stroke.
BACKGROUND: Early prediction of delayed cerebral ischemia (DCI) is critical to improving the prognosis of aneurysmal subarachnoid hemorrhage (aSAH). Machine learning (ML) algorithms can learn from intricate information unbiasedly and facilitate the e...
Ischemic stroke is a type of brain dysfunction caused by pathological changes in the blood vessels of the brain which leads to brain tissue ischemia and hypoxia and ultimately results in cell necrosis. Without timely and effective treatment in the ea...
BACKGROUND: The prognosis, recurrence rates, and secondary prevention strategies varied significantly among different subtypes of acute ischemic stroke (AIS). Machine learning (ML) techniques can uncover intricate, non-linear relationships within med...
BACKGROUND AND PURPOSE: Delayed cerebral ischemia is hard to diagnose early due to gradual, symptomless development. This study aimed to develop an automated model for predicting delayed cerebral ischemia following aneurysmal SAH on NCCT.
OBJECTIVE: To explore the performance of deep learning-based segmentation of infarcted lesions in the brain magnetic resonance imaging (MRI) of patients with acute ischemic stroke (AIS) and the recurrence prediction value of radiomics within 1 year a...
BACKGROUND: Delayed cerebral ischemia (DCI) is a primary contributor to death after subarachnoid hemorrhage (SAH), with significant incidence. Therefore, early determination of the risk of DCI is an urgent need. Machine learning (ML) has received muc...
It is feasible to predict delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage (aSAH) using Artificial intelligence (AI) algorithms, which may offer significant improvements in early diagnosis and patient management. This systemat...