Breast cancer is the most prevalent cancer in women, and early diagnosis of malignant lesions is crucial for developing treatment plans. Digital breast tomosynthesis (DBT) has emerged as a valuable tool for early breast cancer detection, as it can id...
With the advancement of computer technology and imaging equipment, ultrasound has emerged as a crucial tool in breast cancer diagnosis. To gain deeper insights into the research landscape of ultrasound in breast cancer diagnosis, this study employed ...
Breast cancer poses a significant health threat to women, necessitating advancements in diagnostic technologies. Breast dynamic optical imaging (DOI) technology, recognized for its non-invasive and radiation-free properties, is extensively utilized f...
Characterization of breast parenchyma in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a challenging task owing to the complexity of underlying tissue structures. Existing quantitative approaches, like radiomics and deep learning ...
AJR. American journal of roentgenology
Oct 16, 2024
MRI radiomics has been explored for three-tiered classification of HER2 expression levels (i.e., HER2-zero, HER2-low, or HER2-positive) in patients with breast cancer, although an understanding of how such models reach their predictions is lacking. ...
Digital Breast Tomosynthesis (DBT) has revolutionized more traditional breast imaging through its three-dimensional (3D) visualization capability that significantly enhances lesion discernibility, reduces tissue overlap, and improves diagnostic preci...
Journal of imaging informatics in medicine
Sep 25, 2024
This work aims to perform a cross-site validation of automated segmentation for breast cancers in MRI and to compare the performance to radiologists. A three-dimensional (3D) U-Net was trained to segment cancers in dynamic contrast-enhanced axial MRI...
PURPOSE: To evaluate the diagnosis performance of digital mammography (DM) and digital breast tomosynthesis (DBT), DM combined DBT with AI-based strategies for breast mass ≤ 2 cm.
This study addresses the challenge of precise breast tumor segmentation in ultrasound images, crucial for effective Computer-Aided Diagnosis (CAD) in breast cancer. We introduce CBAM-RIUnet, a deep learning (DL) model for automated breast tumor segme...
We investigate the predictive value of a comprehensive model based on preoperative ultrasound radiomics, deep learning, and clinical features for pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) for the breast cancer. We enro...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.