AIMC Topic: Chemotherapy, Adjuvant

Clear Filters Showing 1 to 10 of 86 articles

Machine learning and SHAP value interpretation for predicting the response to neoadjuvant chemotherapy and long-term clinical outcomes in Chinese female breast cancer.

Annals of medicine
BACKGROUND: Most models of neoadjuvant chemotherapy (NACT) for breast cancer (BC) suffer from insufficient data and lack interpretability. Additionally, there is a notable absence of reports from China in this field. This study is also the first to i...

Developing a machine-learning model to enable treatment selection for neoadjuvant chemotherapy for esophageal cancer.

Scientific reports
Although neoadjuvant chemotherapy with docetaxel + cisplatin + 5-fluorouracil (CF) has been the standard treatment for stage II and III esophageal cancers, it is associated with severe adverse events caused by docetaxel. Consequently, this study aime...

Predicting the prognosis of radical gastrectomy for patients with locally advanced gastric cancer after neoadjuvant chemotherapy using machine learning technology: a multicenter study in China.

Surgical endoscopy
BACKGROUND: Neoadjuvant chemotherapy (NAC) can improve the prognosis of patients with locally advanced gastric cancer (LAGC). However, precise models for accurate prognostic predictions are lacking. We aimed to utilize Cox regression and integrate va...

Evaluating cell-free DNA integrity index as a non-invasive biomarker for neoadjuvant chemotherapy in colorectal cancer patients.

BMC cancer
BACKGROUND: Neoadjuvant chemotherapy (NAC) is gaining attention as a treatment for advanced colorectal cancer owing to its potential to improve surgical outcomes and prognosis. However, reliable biomarkers to predict the response to NAC are lacking. ...

Utility of comprehensive genomic profiling combined with machine learning for prognostic stratification in stage II/III colorectal cancer after adjuvant chemotherapy.

International journal of clinical oncology
BACKGROUND AND PURPOSE: Accurate recurrence risk evaluation in patients with stage II and III colorectal cancer (CRC) remains difficult. Traditional histopathological methods frequently fall short in predicting outcomes after adjuvant chemotherapy. T...

Prediction of Chemotherapy Response in Locally Advanced Breast Cancer Patients at Pre-Treatment Using CT Textural Features and Machine Learning: Comparison of Feature Selection Methods.

Tomography (Ann Arbor, Mich.)
RATIONALE: Neoadjuvant chemotherapy (NAC) is a key element of treatment for locally advanced breast cancer (LABC). Predicting the response of NAC for patients with LABC before initiating treatment would be valuable to customize therapies and ensure t...

Self-supervised learning reveals clinically relevant histomorphological patterns for therapeutic strategies in colon cancer.

Nature communications
Self-supervised learning (SSL) automates the extraction and interpretation of histopathology features on unannotated hematoxylin-eosin-stained whole slide images (WSIs). We train an SSL Barlow Twins encoder on 435 colon adenocarcinoma WSIs from The C...

Predicting the efficacy of neoadjuvant chemotherapy in breast cancer patients based on ultrasound longitudinal temporal depth network fusion model.

Breast cancer research : BCR
OBJECTIVE: The aim of this study was to develop and validate a deep learning radiomics (DLR) model based on longitudinal ultrasound data and clinical features to predict pathologic complete response (pCR) after neoadjuvant chemotherapy (NAC) in breas...