AIMC Topic: Colonic Polyps

Clear Filters Showing 11 to 20 of 170 articles

PFPRNet: A Phase-Wise Feature Pyramid With Retention Network for Polyp Segmentation.

IEEE journal of biomedical and health informatics
Early detection of colonic polyps is crucial for the prevention and diagnosis of colorectal cancer. Currently, deep learning-based polyp segmentation methods have become mainstream and achieved remarkable results. Acquiring a large number of labeled ...

Impact of standard enhancement settings of endoscopy systems on performance of endoscopic artificial intelligence systems.

Endoscopy
BACKGROUND:  Artificial intelligence (AI) systems in endoscopy are predominantly developed and tested using high-quality imagery from expert centers. However, their performance may be different when applied in clinical practice, partly due to the div...

Colorectal cancer detection with enhanced precision using a hybrid supervised and unsupervised learning approach.

Scientific reports
The current work introduces the hybrid ensemble framework for the detection and segmentation of colorectal cancer. This framework will incorporate both supervised classification and unsupervised clustering methods to present more understandable and a...

Synthesized colonoscopy dataset from high-fidelity virtual colon with abnormal simulation.

Computers in biology and medicine
With the advent of the deep learning-based colonoscopy system, the need for a vast amount of high-quality colonoscopy image datasets for training is crucial. However, the generalization ability of deep learning models is challenged by the limited ava...

Dynamic spectrum-driven hierarchical learning network for polyp segmentation.

Medical image analysis
Accurate automatic polyp segmentation in colonoscopy is crucial for the prompt prevention of colorectal cancer. However, the heterogeneous nature of polyps and differences in lighting and visibility conditions present significant challenges in achiev...

FocusUNet: Pioneering dual attention with gated U-Net for colonoscopic polyp segmentation.

Computers in biology and medicine
The detection and excision of colorectal polyps, precursors to colorectal cancer (CRC), can improve survival rates by up to 90%. Automated polyp segmentation in colonoscopy images expedites diagnosis and aids in the precise identification of adenomat...

G-SET-DCL: a guided sequential episodic training with dual contrastive learning approach for colon segmentation.

International journal of computer assisted radiology and surgery
PURPOSE: This article introduces a novel deep learning approach to substantially improve the accuracy of colon segmentation even with limited data annotation, which enhances the overall effectiveness of the CT colonography pipeline in clinical settin...

MEFA-Net: A mask enhanced feature aggregation network for polyp segmentation.

Computers in biology and medicine
Accurate polyp segmentation is crucial for early diagnosis and treatment of colorectal cancer. This is a challenging task for three main reasons: (i) the problem of model overfitting and weak generalization due to the multi-center distribution of dat...

Current Status of Artificial Intelligence Use in Colonoscopy.

Digestion
BACKGROUND: Artificial intelligence (AI) has significantly impacted medical imaging, particularly in gastrointestinal endoscopy. Computer-aided detection and diagnosis systems (CADe and CADx) are thought to enhance the quality of colonoscopy procedur...