AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Colonic Polyps

Showing 11 to 20 of 157 articles

Clear Filters

MugenNet: A Novel Combined Convolution Neural Network and Transformer Network with Application in Colonic Polyp Image Segmentation.

Sensors (Basel, Switzerland)
Accurate polyp image segmentation is of great significance, because it can help in the detection of polyps. Convolutional neural network (CNN) is a common automatic segmentation method, but its main disadvantage is the long training time. Transformer...

MEFA-Net: A mask enhanced feature aggregation network for polyp segmentation.

Computers in biology and medicine
Accurate polyp segmentation is crucial for early diagnosis and treatment of colorectal cancer. This is a challenging task for three main reasons: (i) the problem of model overfitting and weak generalization due to the multi-center distribution of dat...

Current Status of Artificial Intelligence Use in Colonoscopy.

Digestion
BACKGROUND: Artificial intelligence (AI) has significantly impacted medical imaging, particularly in gastrointestinal endoscopy. Computer-aided detection and diagnosis systems (CADe and CADx) are thought to enhance the quality of colonoscopy procedur...

A clinical pilot trial of an artificial intelligence-driven smart phone application of bowel preparation for colonoscopy: a randomized clinical trial.

Scandinavian journal of gastroenterology
BACKGROUND: High-quality bowel preparation is paramount for a successful colonoscopy. This study aimed to explore the effect of artificial intelligence-driven smartphone software on the quality of bowel preparation.

Colorectal cancer detection with enhanced precision using a hybrid supervised and unsupervised learning approach.

Scientific reports
The current work introduces the hybrid ensemble framework for the detection and segmentation of colorectal cancer. This framework will incorporate both supervised classification and unsupervised clustering methods to present more understandable and a...

Dynamic spectrum-driven hierarchical learning network for polyp segmentation.

Medical image analysis
Accurate automatic polyp segmentation in colonoscopy is crucial for the prompt prevention of colorectal cancer. However, the heterogeneous nature of polyps and differences in lighting and visibility conditions present significant challenges in achiev...

Synthesized colonoscopy dataset from high-fidelity virtual colon with abnormal simulation.

Computers in biology and medicine
With the advent of the deep learning-based colonoscopy system, the need for a vast amount of high-quality colonoscopy image datasets for training is crucial. However, the generalization ability of deep learning models is challenged by the limited ava...

FocusUNet: Pioneering dual attention with gated U-Net for colonoscopic polyp segmentation.

Computers in biology and medicine
The detection and excision of colorectal polyps, precursors to colorectal cancer (CRC), can improve survival rates by up to 90%. Automated polyp segmentation in colonoscopy images expedites diagnosis and aids in the precise identification of adenomat...

G-SET-DCL: a guided sequential episodic training with dual contrastive learning approach for colon segmentation.

International journal of computer assisted radiology and surgery
PURPOSE: This article introduces a novel deep learning approach to substantially improve the accuracy of colon segmentation even with limited data annotation, which enhances the overall effectiveness of the CT colonography pipeline in clinical settin...

Towards full integration of explainable artificial intelligence in colon capsule endoscopy's pathway.

Scientific reports
Despite recent surge of interest in deploying colon capsule endoscopy (CCE) for early diagnosis of colorectal diseases, there remains a large gap between the current state of CCE in clinical practice, and the state of its counterpart optical colonosc...