Deep learning has achieved immense success in computer vision and has the potential to help physicians analyze visual content for disease and other abnormalities. However, the current state of deep learning is very much a black box, making medical pr...
JPMA. The Journal of the Pakistan Medical Association
38712427
Artificial Intelligence (AI) in the last few years has emerged as a valuable tool in managing colorectal cancer, revolutionizing its management at different stages. In early detection and diagnosis, AI leverages its prowess in imaging analysis, scrut...
BACKGROUND: Real-time prediction of histologic features of small colorectal polyps may prevent resection and/or pathologic evaluation and therefore decrease colonoscopy costs. Previous studies showed that computer-aided diagnosis (CADx) was highly ac...
BACKGROUND AND STUDY AIM: High-definition virtual chromoendoscopy, along with targeted biopsies, is recommended for dysplasia surveillance in ulcerative colitis patients at risk for colorectal cancer. Computer-aided detection (CADe) systems aim to im...
Colorectal cancer (CRC) prevention requires early detection and removal of adenomas. We aimed to develop a computational model for real-time detection and classification of colorectal adenoma. Computationally constrained background based on real-time...
Using a systematic literature search of original articles published during 2023 in Gastrointestinal Endoscopy (GIE) and other high-impact medical and gastroenterology journals, the GIE Editorial Board of the American Society for Gastrointestinal Endo...
BACKGROUND AND AIMS: Computer-aided diagnosis (CADx) for the optical diagnosis of colorectal polyps is thoroughly investigated. However, studies on human-artificial intelligence interaction are lacking. Our aim was to investigate endoscopists' trust ...
The lancet. Gastroenterology & hepatology
39153491
BACKGROUND: Increased polyp detection during colonoscopy is associated with decreased post-colonoscopy colorectal cancer incidence and mortality. The COLO-DETECT trial aimed to assess the clinical effectiveness of the GI Genius intelligent endoscopy ...
International journal of computer assisted radiology and surgery
39115609
PURPOSE: Commonly employed in polyp segmentation, single-image UNet architectures lack the temporal insight clinicians gain from video data in diagnosing polyps. To mirror clinical practices more faithfully, our proposed solution, PolypNextLSTM, leve...