OBJECTIVE: This study aimed to investigate whether a deep learning reconstruction (DLR) method improves the image quality, stent evaluation, and visibility of the valve apparatus in coronary computed tomography angiography (CCTA) when compared with f...
Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association
Sep 10, 2022
OBJECTIVES: Automated image-level detection of large vessel occlusions (LVO) could expedite patient triage for mechanical thrombectomy. A few studies have previously attempted LVO detection using artificial intelligence (AI) on CT angiography (CTA) i...
The accuracy of computed tomography angiography (CTA) image interpretation depends on the radiologist. This study aims to develop a new method for automatically detecting intracranial aneurysms from CTA images using deep learning, based on a convolut...
Acta radiologica (Stockholm, Sweden : 1987)
Aug 17, 2022
BACKGROUND: The demand for homogeneous and higher vascular contrast enhancement is critical to provide an appropriate interpretation of abnormal vascular findings in coronary computed tomography angiography (CTA).
Computational intelligence and neuroscience
Jun 13, 2022
This study was aimed at investigating the application of deep learning 4D computed tomography angiography (CTA) combined with whole brain CT perfusion (CTP) imaging in acute ischemic stroke (AIS). A total of 46 patients with ischemic stroke were sele...
OBJECTIVES: To explore the impact of deep learning reconstruction (DLR) on image quality and machine learning-based coronary CT angiography (CTA)-derived fractional flow reserve (CT-FFR) values.
The purpose of the research was to discuss the application values of deep learning algorithm-based computed tomography perfusion (CTP) imaging combined with head and neck computed tomography angiography (CTA) in the diagnosis of ultra-early acute isc...
OBJECTIVES: Volumetric evaluation of coronary artery disease (CAD) allows better prediction of cardiac events. However, CAD segmentation is labor intensive. Our objective was to create an open-source deep learning (DL) model to segment coronary plaqu...
PURPOSE: The aim of this study was to examine the evaluation of ultra-high-resolution computed tomography angiography (UHR CTA) images in moyamoya disease (MMD) reconstructed with hybrid iterative reconstruction (Hybrid-IR), model-based iterative rec...
OBJECTIVES: Coronary computed tomography angiography (CCTA) has rapidly developed in the coronary artery disease (CAD) field. However, manual coronary artery tree segmentation and reconstruction are time-consuming and tedious. Deep learning algorithm...