AIMC Topic: Crops, Agricultural

Clear Filters Showing 41 to 50 of 188 articles

Synthetic biology and artificial intelligence in crop improvement.

Plant communications
Synthetic biology plays a pivotal role in improving crop traits and increasing bioproduction through the use of engineering principles that purposefully modify plants through "design, build, test, and learn" cycles, ultimately resulting in improved b...

Advancing food security: Rice yield estimation framework using time-series satellite data & machine learning.

PloS one
Timely and accurately estimating rice yields is crucial for supporting food security management, agricultural policy development, and climate change adaptation in rice-producing countries such as Bangladesh. To address this need, this study introduce...

Development of multistage crop yield estimation model using machine learning and deep learning techniques.

International journal of biometeorology
In this research paper, machine learning techniques were applied to a multivariate meteorological time series data for estimating the wheat yield of five districts of Punjab. Wheat yield data and weather parameters over 34 years were collected from t...

Integrating Sentinel-1 data and machine learning for effective paddy field monitoring in Cauvery Delta Zone, Tamil Nadu, India.

Environmental monitoring and assessment
Paddy crop mapping is essential for agricultural monitoring, ensuring food security, and enhancing resource allocation. This study observes the Cauvery Delta Zone (CDZ), recognized as the rice bowl of Tamil Nadu and a crucial area for paddy farming i...

Smart agriculture: utilizing machine learning and deep learning for drought stress identification in crops.

Scientific reports
Plant stress reduction research has advanced significantly with the use of Artificial Intelligence (AI) techniques, such as machine learning and deep learning. This is a significant step toward sustainable agriculture. Innovative insights into the ph...

Towards efficient IoT communication for smart agriculture: A deep learning framework.

PloS one
The integration of IoT (Internet of Things) devices has emerged as a technical cornerstone in the landscape of modern agriculture, revolutionising the way farming practises are viewed and managed. Smart farming, enabled by interconnected sensors and ...

Sunflower mapping using machine learning algorithm in Google Earth Engine platform.

Environmental monitoring and assessment
The sunflower crop is one of the most pro sources of vegetable oil globally. It is cultivated all around the world including Haryana, in India. However, its mapping is limited due to the requirement of huge computation power, large data storage capac...

Deep learning-based rice pest detection research.

PloS one
With the increasing pressure on global food security, the effective detection and management of rice pests have become crucial. Traditional pest detection methods are not only time-consuming and labor-intensive but also often fail to achieve real-tim...

Improving crop production using an agro-deep learning framework in precision agriculture.

BMC bioinformatics
BACKGROUND: The study focuses on enhancing the effectiveness of precision agriculture through the application of deep learning technologies. Precision agriculture, which aims to optimize farming practices by monitoring and adjusting various factors i...

Big data and artificial intelligence-aided crop breeding: Progress and prospects.

Journal of integrative plant biology
The past decade has witnessed rapid developments in gene discovery, biological big data (BBD), artificial intelligence (AI)-aided technologies, and molecular breeding. These advancements are expected to accelerate crop breeding under the pressure of ...