IEEE transactions on bio-medical engineering
Feb 15, 2016
GOAL: Most state-of-the-art computer-aided endoscopic diagnosis methods require pixelwise labeled data to train various supervised machine learning models. However, it is a tedious and time-consuming work to collect sufficient precisely labeled image...
Regulatory toxicology and pharmacology : RTP
Feb 13, 2016
Statistical-based and expert rule-based models built using public domain mutagenicity knowledge and data are routinely used for computational (Q)SAR assessments of pharmaceutical impurities in line with the approach recommended in the ICH M7 guidelin...
Remarkable progress has been made in image recognition, primarily due to the availability of large-scale annotated datasets and deep convolutional neural networks (CNNs). CNNs enable learning data-driven, highly representative, hierarchical image fea...
Cerebral microbleeds (CMBs) are small haemorrhages nearby blood vessels. They have been recognized as important diagnostic biomarkers for many cerebrovascular diseases and cognitive dysfunctions. In current clinical routine, CMBs are manually labelle...
We present a pipeline for the visual localization and classification of agricultural pest insects by computing a saliency map and applying deep convolutional neural network (DCNN) learning. First, we used a global contrast region-based approach to co...
Convolutional neural networks (CNNs) are deep learning network architectures that have pushed forward the state-of-the-art in a range of computer vision applications and are increasingly popular in medical image analysis. However, training of CNNs is...
One important routine task in injury research is to effectively classify injury circumstances into user-defined categories when using narrative text. However, traditional manual processes can be time consuming, and existing batch learning systems can...
Computational intelligence and neuroscience
Jan 21, 2016
The discordance between expressions interpretable by a natural language interface (NLI) system and those answerable by a knowledge base is a critical problem in the field of NLIs. In order to solve this discordance problem, this paper proposes a meth...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.