BACKGROUND: Radical measures are required to identify and reduce blindness due to diabetes to achieve the Sustainable Development Goals by 2030. Therefore, we evaluated the accuracy of an artificial intelligence (AI) model using deep learning in a po...
The European Medicines Agency has defined Big Data by the "3 V's": Volume, Velocity and Variety. These large databases allow access to real life data on patient care. They are particularly suited for studies of adverse events and pharmacoepidemiology...
Despite advances in artificial intelligence (AI), its application in medical imaging has been burdened and limited by expert-generated labels. We used images from optical coherence tomography angiography (OCTA), a relatively new imaging modality that...
UNLABELLED: Prior art on automated screening of diabetic retinopathy and direct referral decision shows promising performance; yet most methods build upon complex hand-crafted features whose performance often fails to generalize.
PURPOSE: We investigated using ultrawide-field fundus images with a deep convolutional neural network (DCNN), which is a machine learning technology, to detect treatment-naïve proliferative diabetic retinopathy (PDR).
Asia-Pacific journal of ophthalmology (Philadelphia, Pa.)
Dec 17, 2018
Diabetic retinopathy, glaucoma, and age-related macular degeneration are leading causes of vision loss and blindness worldwide. They tend to be asymptomatic in the early phase of disease and therefore require active screening programs to identify the...
Clinical & experimental ophthalmology
Nov 15, 2018
IMPORTANCE: Artificial intelligence (AI) algorithms are under development for use in diabetic retinopathy photo screening pathways. To be clinically acceptable, such systems must also be able to classify other fundus abnormalities and clinical featur...
Remarkable advances in biomedical research have led to the generation of large amounts of data. Using artificial intelligence, it has become possible to extract meaningful information from large volumes of data, in a shorter frame of time, with very ...