AIMC Topic: Drug Compounding

Clear Filters Showing 11 to 20 of 144 articles

Deep learning-based defect detection in film-coated tablets using a convolutional neural network.

International journal of pharmaceutics
Film-coating is a critical step in pharmaceutical manufacturing. Traditional visual inspections for film-coated tablet defect assessment are subjective, inefficient, and labor-intensive. We propose a novel approach utilizing machine learning and imag...

'Applications of machine learning in liposomal formulation and development'.

Pharmaceutical development and technology
Machine learning (ML) has emerged as a transformative tool in drug delivery, particularly in the design and optimization of liposomal formulations. This review focuses on the intersection of ML and liposomal technology, highlighting how advanced algo...

Preparation and optimisation of solid lipid nanoparticles of rivaroxaban using artificial neural networks and response surface method.

Journal of microencapsulation
AIMS: This study aimed to improve rivaroxaban delivery by optimising solid lipid nanoparticles (SLN) for minimal mean diameter and maximal entrapment efficiency (EE), enhancing solubility, bioavailability, and the ability to cross the blood-brain bar...

A deep learning approach to perform defect classification of freeze-dried product.

International journal of pharmaceutics
Cosmetic inspection of freeze-dried products is an important part of the post-manufacturing quality control process. Traditionally done by human visual inspection, this method poses typical challenges and shortcomings that can be addressed with innov...

FormulationBCS: A Machine Learning Platform Based on Diverse Molecular Representations for Biopharmaceutical Classification System (BCS) Class Prediction.

Molecular pharmaceutics
The Biopharmaceutics Classification System (BCS) has facilitated biowaivers and played a significant role in enhancing drug regulation and development efficiency. However, the productivity of measuring the key discriminative properties of BCS, solubi...

Optimizing critical quality attributes of fast disintegrating tablets using artificial neural networks: a scientific benchmark study.

Drug development and industrial pharmacy
OBJECTIVE: The objective of this study is to create predictive models utilizing machine learning algorithms, including Artificial Neural Networks (ANN), k-nearest neighbor (kNN), support vector machines (SVM), and linear regression, to predict critic...

Modelling the effect of base component properties and processing conditions on mixture products using probabilistic, knowledge-guided neural networks.

International journal of pharmaceutics
Development of materials by mixing different base components is a widespread methodology to create materials with improved properties compared to those of its base components. However, efficient determination of the properties of mixture-based materi...

High-Speed Imaging-Based Particle Attribute Analysis of Spray-Dried Amorphous Solid Dispersions Using a Convolution Neural Network.

Molecular pharmaceutics
Spray drying is a well-established method for preparing amorphous solid dispersion (ASD) formulations to improve the oral bioavailability of poorly soluble drugs. In addition to the characterization of the amorphous phase, particle attributes of spra...

Machine learning strengthened formulation design of pharmaceutical suspensions.

International journal of pharmaceutics
Many different formulation strategies have been investigated to oppose suboptimal treatment of long-term or chronic conditions, one of which are the nano- and microsuspensions prepared as long-acting injectables to prolong the release of an active ph...

In silico formulation optimization and particle engineering of pharmaceutical products using a generative artificial intelligence structure synthesis method.

Nature communications
Pharmaceutical drug dosage forms are critical for ensuring the effective and safe delivery of active pharmaceutical ingredients to patients. However, traditional formulation development often relies on extensive lab and animal experimentation, which ...