Machine learning (ML) is increasingly recognized as a useful tool in healthcare applications, including epilepsy. One of the most important applications of ML in epilepsy is seizure detection and prediction, using wearable devices (WDs). However, not...
IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
Jul 20, 2020
Humanoid robots are widely used in brain computer interface (BCI). Using a humanoid robot stimulus could increase the amplitude of event-related potentials (ERPs), which improves BCI performance. Since a humanoid robot contains many human elements, t...
Computational and mathematical methods in medicine
Jul 20, 2020
EEG pattern recognition is an important part of motor imagery- (MI-) based brain computer interface (BCI) system. Traditional EEG pattern recognition algorithm usually includes two steps, namely, feature extraction and feature classification. In feat...
Medical & biological engineering & computing
Jul 16, 2020
Both labeled and unlabeled data have been widely used in electroencephalographic (EEG)-based brain-computer interface (BCI). However, labeled EEG samples are generally scarce and expensive to collect, while unlabeled samples are considered to be abun...
IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
Jul 15, 2020
Human operator control of brain-actuated robot steering based on electroencephalograph (EEG)-signals is a complex behavior consisting of surroundings perceiving, decision making, and commands issuing and differs among individual operators. However, n...
Physical and engineering sciences in medicine
Jul 13, 2020
Brain-Computer Interface (BCI) systems establish a channel for direct communication between the brain and the outside world without having to use the peripheral nervous system. While most BCI systems use evoked potentials and motor imagery, in the pr...
OBJECTIVE: Mobile Brain/Body Imaging (MoBI) frameworks allowed the research community to find evidence of cortical involvement at walking initiation and during locomotion. However, the decoding of gait patterns from brain signals remains an open chal...
A Brain-Computer Interface (BCI) acts as a communication mechanism using brain signals to control external devices. The generation of such signals is sometimes independent of the nervous system, such as in Passive BCI. This is majorly beneficial for ...
Neural networks : the official journal of the International Neural Network Society
Jun 25, 2020
Electroencephalogram (EEG) signals accumulate the brain's spiking activities using standardized electrodes placed at the scalp. These cumulative brain signals are chaotic in nature and vary depending upon current physical and/or mental activities. Th...
OBJECTIVE: Automatic sleep stage scoring is of great importance for investigating sleep architecture during infancy. In this work, we introduce a novel multichannel approach based on deep learning networks and hidden Markov models (HMM) to improve th...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.