AIMC Topic: Electroencephalography

Clear Filters Showing 281 to 290 of 2116 articles

Wearable EEG Neurofeedback Based-on Machine Learning Algorithms for Children with Autism: A Randomized, Placebo-controlled Study.

Current medical science
OBJECTIVE: Behavioral interventions have been shown to ameliorate the electroencephalogram (EEG) dynamics underlying the behavioral symptoms of autism spectrum disorder (ASD), while studies have also demonstrated that mirror neuron mu rhythm-based EE...

A continuous pursuit dataset for online deep learning-based EEG brain-computer interface.

Scientific data
This dataset is from an EEG brain-computer interface (BCI) study investigating the use of deep learning (DL) for online continuous pursuit (CP) BCI. In this task, subjects use Motor Imagery (MI) to control a cursor to follow a randomly moving target,...

Classification of hand movements from EEG using a FusionNet based LSTM network.

Journal of neural engineering
. Accurate classification of electroencephalogram (EEG) signals is crucial for advancing brain-computer interface (BCI) technology. However, current methods face significant challenges in classifying hand movement EEG signals, including effective spa...

Enhancing Motor Imagery Classification with Residual Graph Convolutional Networks and Multi-Feature Fusion.

International journal of neural systems
Stroke, an abrupt cerebrovascular ailment resulting in brain tissue damage, has prompted the adoption of motor imagery (MI)-based brain-computer interface (BCI) systems in stroke rehabilitation. However, analyzing electroencephalogram (EEG) signals f...

Deep Learning Recognition of Paroxysmal Kinesigenic Dyskinesia Based on EEG Functional Connectivity.

International journal of neural systems
Paroxysmal kinesigenic dyskinesia (PKD) is a rare neurological disorder marked by transient involuntary movements triggered by sudden actions. Current diagnostic approaches, including genetic screening, face challenges in identifying secondary cases ...

A Novel and Powerful Dual-Stream Multi-Level Graph Convolution Network for Emotion Recognition.

Sensors (Basel, Switzerland)
Emotion recognition enables machines to more acutely perceive and understand users' emotional states, thereby offering more personalized and natural interactive experiences. Given the regularity of the responses of brain activity to human cognitive p...

An adaptive multi-graph neural network with multimodal feature fusion learning for MDD detection.

Scientific reports
Major Depressive Disorder (MDD) is an affective disorder that can lead to persistent sadness and a decline in the quality of life, increasing the risk of suicide. Utilizing multimodal data such as electroencephalograms and patient interview audios ca...

Assessing operator stress in collaborative robotics: A multimodal approach.

Applied ergonomics
In the era of Industry 4.0, the study of Human-Robot Collaboration (HRC) in advancing modern manufacturing and automation is paramount. An operator approaching a collaborative robot (cobot) may have feelings of distrust, and experience discomfort and...

Partial prior transfer learning based on self-attention CNN for EEG decoding in stroke patients.

Scientific reports
The utilization of motor imagery-based brain-computer interfaces (MI-BCI) has been shown to assist stroke patients activate motor regions in the brain. In particular, the brain regions activated by unilateral upper limb multi-task are more extensive,...

AFSleepNet: Attention-Based Multi-View Feature Fusion Framework for Pediatric Sleep Staging.

IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
The widespread prevalence of sleep problems in children highlights the importance of timely and accurate sleep staging in the diagnosis and treatment of pediatric sleep disorders. However, most existing sleep staging methods rely on one-dimensional r...