AIMC Topic: Enzyme Inhibitors

Clear Filters Showing 11 to 20 of 84 articles

Study on SHP2 Conformational Transition and Structural Characterization of Its High-Potency Allosteric Inhibitors by Molecular Dynamics Simulations Combined with Machine Learning.

Molecules (Basel, Switzerland)
The src-homology 2 domain-containing phosphatase 2 (SHP2) is a human cytoplasmic protein tyrosine phosphatase that plays a crucial role in cellular signal transduction. Aberrant activation and mutations of SHP2 are associated with tumor growth and im...

Enhanced prediction of beta-secretase inhibitory compounds with mol2vec technique and machine learning algorithms.

SAR and QSAR in environmental research
A comprehensive computational strategy that combined QSAR modelling, molecular docking, and ADMET analysis was used to discover potential inhibitors for β-secretase 1 (BACE-1). A dataset of 1,138 compounds with established BACE-1 inhibitory activitie...

Integrated machine learning and physics-based methods assisted de novo design of Fatty Acyl-CoA synthase inhibitors.

Expert opinion on drug discovery
BACKGROUND: Tuberculosis is an infectious disease that has become endemic worldwide. The causative bacteria (Mtb) is targeted via several exciting drug targets. One newly discovered target is the Fatty Acyl-CoA synthase, which plays a significant ro...

Machine learning models to identify lead compound and substitution optimization to have derived energetics and conformational stability through docking and MD simulations for sphingosine kinase 1.

Molecular diversity
Sphingosine kinases (SphKs) are a group of important enzymes that circulate at low micromolar concentrations in mammals and have received considerable attention due to the roles they play in a broad array of biological processes including apoptosis, ...

Integration of 3D-QSAR, molecular docking, and machine learning techniques for rational design of nicotinamide-based SIRT2 inhibitors.

Computational biology and chemistry
Selective inhibitors of sirtuin-2 (SIRT2) are increasingly recognized as potential therapeutics for cancer and neurodegenerative diseases. Derivatives of 5-((3-amidobenzyl)oxy)nicotinamides have been identified as some of the most potent and selectiv...

Recursive dynamics of GspE through machine learning enabled identification of inhibitors.

Computational biology and chemistry
Type II secretion System has been increasingly recognized as a key driver of virulence in many pathogenic bacteria including Achromobacter xylosoxidans. ATPase GspE is the powerhouse of the T2SS. It powers the entire secretion process by binding with...

Development of a machine learning-based target-specific scoring function for structure-based binding affinity prediction for human dihydroorotate dehydrogenase inhibitors.

Journal of computational chemistry
Human dihydroorotate dehydrogenase (hDHODH) is a flavin mononucleotide-dependent enzyme that can limit de novo pyrimidine synthesis, making it a therapeutic target for diseases such as autoimmune disorders and cancer. In this study, using the docking...

Novel molecular inhibitor design for Plasmodium falciparum Lactate dehydrogenase enzyme using machine learning generated library of diverse compounds.

Molecular diversity
Generative machine learning models offer a novel strategy for chemogenomics and de novo drug design, allowing researchers to streamline their exploration of the chemical space and concentrate on specific regions of interest. In cases with limited inh...

Identification of mycobacterial Thymidylate kinase inhibitors: a comprehensive pharmacophore, machine learning, molecular docking, and molecular dynamics simulation studies.

Molecular diversity
Thymidylate kinase (TMK) is a pivotal enzyme in Mycobacterium tuberculosis (Mtb), crucial for phosphorylating thymidine monophosphate (dTMP) to thymidine diphosphate (dTDP), thereby playing a critical role in DNA biosynthesis. Dysregulation or inhibi...

Virtual-screening of xanthine oxidase inhibitory peptides: Inhibition mechanisms and prediction of activity using machine-learning.

Food chemistry
Xanthine oxidase (XO) inhibitory peptides can prevent XO-mediated hyperuricemia. Currently, QSAR about XO inhibitory peptides with different lengths remains to be enriched. Here, XO inhibitory peptides were obtained from porcine visceral proteins thr...