AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Histocompatibility Antigens Class I

Showing 21 to 30 of 36 articles

Clear Filters

Predicting peptide presentation by major histocompatibility complex class I: an improved machine learning approach to the immunopeptidome.

BMC bioinformatics
BACKGROUND: To further our understanding of immunopeptidomics, improved tools are needed to identify peptides presented by major histocompatibility complex class I (MHC-I). Many existing tools are limited by their reliance upon chemical affinity data...

ELM-MHC: An Improved MHC Identification Method with Extreme Learning Machine Algorithm.

Journal of proteome research
The major histocompatibility complex (MHC) is a term for all gene groups of a major histocompatibility antigen. It binds to peptide chains derived from pathogens and displays pathogens on the cell surface to facilitate T-cell recognition and perform ...

MHCSeqNet: a deep neural network model for universal MHC binding prediction.

BMC bioinformatics
BACKGROUND: Immunotherapy is an emerging approach in cancer treatment that activates the host immune system to destroy cancer cells expressing unique peptide signatures (neoepitopes). Administrations of cancer-specific neoepitopes in the form of synt...

Machine-Learning Prediction of Tumor Antigen Immunogenicity in the Selection of Therapeutic Epitopes.

Cancer immunology research
Current tumor neoantigen calling algorithms primarily rely on epitope/major histocompatibility complex (MHC) binding affinity predictions to rank and select for potential epitope targets. These algorithms do not predict for epitope immunogenicity usi...

High-Throughput Prediction of MHC Class I and II Neoantigens with MHCnuggets.

Cancer immunology research
Computational prediction of binding between neoantigen peptides and major histocompatibility complex (MHC) proteins can be used to predict patient response to cancer immunotherapy. Current neoantigen predictors focus on estimation of MHC binding aff...

ACME: pan-specific peptide-MHC class I binding prediction through attention-based deep neural networks.

Bioinformatics (Oxford, England)
MOTIVATION: Prediction of peptide binding to the major histocompatibility complex (MHC) plays a vital role in the development of therapeutic vaccines for the treatment of cancer. Algorithms with improved correlations between predicted and actual bind...

Prediction of peptide binding to MHC using machine learning with sequence and structure-based feature sets.

Biochimica et biophysica acta. General subjects
Selecting peptides that bind strongly to the major histocompatibility complex (MHC) for inclusion in a vaccine has therapeutic potential for infections and tumors. Machine learning models trained on sequence data exist for peptide:MHC (p:MHC) binding...

iTTCA-Hybrid: Improved and robust identification of tumor T cell antigens by utilizing hybrid feature representation.

Analytical biochemistry
In spite of the repertoire of existing cancer therapies, the ongoing recurrence and new cases of cancer poses a challenging health concern that prompts for novel and effective treatment. Cancer immunotherapy represents a promising venue for treatment...

IConMHC: a deep learning convolutional neural network model to predict peptide and MHC-I binding affinity.

Immunogenetics
Tumor-specific neoantigens are mutated self-peptides presented by tumor cell major histocompatibility complex (MHC) molecules and are necessary to elicit host's anti-cancer cytotoxic T cell responses. It could be specifically recognized by neoantigen...

Estimating the Binding of Sars-CoV-2 Peptides to HLA Class I in Human Subpopulations Using Artificial Neural Networks.

Cell systems
Epidemiological studies show that SARS-CoV-2 infection leads to severe symptoms only in a fraction of patients, but the determinants of individual susceptibility to the virus are still unknown. The major histocompatibility complex (MHC) class I expos...