AIMC Topic: Infant

Clear Filters Showing 141 to 150 of 987 articles

Factors Associated with Abusive Head Trauma in Young Children Presenting to Emergency Medical Services Using a Large Language Model.

Prehospital emergency care
OBJECTIVES: Abusive head trauma (AHT) is a leading cause of death in young children. Analyses of patient characteristics presenting to Emergency Medical Services (EMS) are often limited to structured data fields. Artificial Intelligence (AI) and Larg...

Derivation and validation of a clinical predictive model for longer duration diarrhea among pediatric patients in Kenya using machine learning algorithms.

BMC medical informatics and decision making
BACKGROUND: Despite the adverse health outcomes associated with longer duration diarrhea (LDD), there are currently no clinical decision tools for timely identification and better management of children with increased risk. This study utilizes machin...

Risk Prediction of Liver Injury in Pediatric Tuberculosis Treatment: Development of an Automated Machine Learning Model.

Drug design, development and therapy
PURPOSE: Drug-induced liver injury (DILI) is one of the most common and serious adverse drug reactions related to first-line anti-tuberculosis drugs in pediatric tuberculosis patients. This study aims to develop an automatic machine learning (AutoML)...

Using supervised machine learning and ICD10 to identify non-accidental trauma in pediatric trauma patients in the Maryland Health Services Cost Review Commission dataset.

Child abuse & neglect
BACKGROUND: Identifying non-accidental trauma (NAT) in pediatric trauma patients is challenging. We developed a machine learning model that uses demographic characteristics and ICD10 codes to detect the first diagnosis of NAT.

Assessing chemical exposure risk in breastfeeding infants: An explainable machine learning model for human milk transfer prediction.

Ecotoxicology and environmental safety
Breast milk is essential for infant health, but the transfer of xenobiotic chemicals poses significant risks. Ethical challenges in clinical trials necessitate the use of in vitro predictive models to assess chemical exposure risks in breastfeeding i...

A machine learning model accurately identifies glycogen storage disease Ia patients based on plasma acylcarnitine profiles.

Orphanet journal of rare diseases
BACKGROUND: Glycogen storage disease (GSD) Ia is an ultra-rare inherited disorder of carbohydrate metabolism. Patients often present in the first months of life with fasting hypoketotic hypoglycemia and hepatomegaly. The diagnosis of GSD Ia relies on...

Development and external validation of a machine learning model for brain injury in pediatric patients on extracorporeal membrane oxygenation.

Critical care (London, England)
BACKGROUND: Patients supported by extracorporeal membrane oxygenation (ECMO) are at a high risk of brain injury, contributing to significant morbidity and mortality. This study aimed to employ machine learning (ML) techniques to predict brain injury ...

Predicting early cessation of exclusive breastfeeding using machine learning techniques.

PloS one
BACKGROUND: Identification of mother-infant pairs predisposed to early cessation of exclusive breastfeeding is important for delivering targeted support. Machine learning techniques enable development of transparent prediction models that enhance cli...

Utilizing natural language processing to identify pediatric patients experiencing status epilepticus.

Seizure
PURPOSE: Compare the identification of patients with established status epilepticus (ESE) and refractory status epilepticus (RSE) in electronic health records (EHR) using human review versus natural language processing (NLP) assisted review.

Early childhood caries risk prediction using machine learning approaches in Bangladesh.

BMC oral health
BACKGROUND: In the last years, artificial intelligence (AI) has contributed to improving healthcare including dentistry. The objective of this study was to develop a machine learning (ML) model for early childhood caries (ECC) prediction by identifyi...